Strumenti Utente

Strumenti Sito


wikifemfuchde2020:phoneyfsaechassis

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
wikifemfuchde2020:phoneyfsaechassis [2020/05/28 14:30] – [Properties] ebertocchiwikifemfuchde2020:phoneyfsaechassis [2020/05/28 16:40] (versione attuale) ebertocchi
Linea 1: Linea 1:
 +Initial model
  
 +{{ :wikifemfuchde2019:monocoque_chassis_2019_v000.mud |}}
 +
 +Step by step evolution: 
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v001.mud |v001}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v002.mud |v002}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v003.mud |v003}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v004.mud |v004}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v005.mud |v005}}
 +
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v005b.mud |v005b}}, with the added sway bar linkage.
 +
 +Inertia relief model, without added masses
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v007.mud | v007}}, 
 +and with the added masses {{ :wikifemfuchde2020:monocoque_chassis_2019_v008.mud |v008}} {{ :wikifemfuchde2020:monocoque_chassis_2019_v009.mud |v009}}.
 +
 +Front impact, with or without ground support
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v010.mud |v010}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v011.mud |v011}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v012.mud |v012}}.
 +
 +Dynamic modal loadcase
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v013.mud |v013}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v014.mud |v014}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v016.mud |v015}}
 +{{ :wikifemfuchde2020:monocoque_chassis_2019_v016.mud |v016}}
 +
 +==== Properties ====
 +**Suspension link trusses**
 +
 +Solid circular beam sections, ø12mm, aluminum. 
 +Essentially rigid with respect to other chassis structures.
 +
 +**Rear framework**
 +
 +Hollow circular section beam, aluminum.
 +
 +Main structure: outer diameter ø40mm, wall thickness 1.8mm. 
 +
 +Stiffeners: outer diameter ø30mm, wall thickness 1.2mm. 
 +
 +**Composite monocoque**
 +
 +Thicker backbone: 1.8mm aluminum sheet, 25.4mm aluminum honeycomb 3003, density 5.2 lb/ft^3 ({{ :wikifemfuchde2019:hex-3003-td.pdf |}}), 1.8mm aluminum sheet.
 +
 +
 +Thinner panels: 1.8mm aluminum sheet, 6.75mm same aluminum honeycomb, 1.8mm aluminum sheet.
 +
 +Frontal shock absorber support plate: provisionally as thinner panels, to be defined based on shock.
 +
 +
 +**Sway (anti-roll) bar**
 +
 +outer diameter ø25mm, wall thickness 2mm, extremely stiff ([[https://en.wikipedia.org/wiki/Mazinger_Z|Super-alloy Z]], ''E=E_steel*1e4'', ''nu=0.3''); it may be mechanically isolated at need by deactivating one of the connecting elements to the wheel hub carriers.
 +
 +Such a "deformable but extremely stiff" linkage modeling should be discouraged in favor of an actual kinematic constraining -- i.e. an MPC, since excessive stiffness badly impacts the system matrix condition number (or the integration time step, in the case of explicit dynamic simulations); nonetheless, it allowed for a very straightforward implementation.
 +
 +**Inertial elements**
 +
 +{{ :wikifemfuchde2019:monocoque_chassis_2019_inertial_elements_alone.mud |}}
 +
 +{{ :wikifemfuchde2019:inertially_equivalent_cuboid_engine.ods |}}
 +
 +{{ :wikifemfuchde2019:inertially_equivalent_cuboid_wheel_assemblies.ods |}}
 +
 +** Notes: **
 +
 +<del>The pedagogical model proposed does **not** include sway/antiroll bars, that are instead a critical element for torsional stiffness loadcases.</del>
 +
 +In particular, torsional stiffness should be evaluated in both the limiting cases of
 +  * rigid springs, disconnected sway bars;
 +  * disconnected springs, rigid sway bar.
 +
 +This second loadcase, which is usually neglected, is however relevant for sizing the sway bar support areas on the chassis structure.
 +
 +**On the relevance of constraining in dynamic analyses**. 
 +[[https://www.youtube.com/watch?v=-LFLV47VAbI|back view]] [[https://www.youtube.com/watch?v=RihcJR0zvfM|side view]] relevance of (improper) constraints on the dynamic behaviour of a structure.
 +Design is reliable in actual operational conditions ([[https://en.wikipedia.org/wiki/Boeing_CH-47_Chinook|link]]).
 +Added constraints stiffen up the structure, thus increasing natural frequencies.
 +However, a 0 Hz rigid body mode natural frequency may rise to a finite value due to added positioning constraints; the associate natural mode may be excited in resonance by dynamic loads.
 +
 +**How to set a damped response**
 +
 +<hidden Click here to expand>
 +
 +In order to include a small degree of structural damping (eg. 1% of the critical value) into a MSC.Marc/Mentat harmonic response calculation, the following steps may be followed:
 +  * enter the menu ''MAIN -> MATERIAL PROPERTIES -> MATERIAL PROPERTIES'';
 +  * preemptively define a modulating table 1/ω 
 +    * menu ''TABLES'', ''NEW -> 1 INDIPENDENT VARIABLE''
 +    * define ''NAME'' as ''modulate_stiffmatmult''
 +    * set //Indipendent variable v1// ''TYPE'' as ''frequency''
 +    * define //table// through ''FORMULA'' and type ''1/pi/v1'', i.e.  $g(f)=\frac{1}{\pi f}$
 +  * go back to ''MAIN -> MATERIAL PROPERTIES -> MATERIAL PROPERTIES'' by hitting ''RETURN'';
 +  * select the various model materials, and for each of them enter the submenu ''STRUCTURAL -> DAMPING'' and activate ''DAMPING'';
 +  * leave alone the ''MASS MATRIX MULTIPLIER'' value (0 is ok, otherwise some "structural" damping will be associated to rigid body motions),
 +  * define a ''STIFFNESS MATRIX MULTIPLIER'' equal to the desired fraction of the critical value, namely ''0.01'', 
 +  * set a frequency modulating function, namely //TABLE//, by hitting the ''TABLE'' button on the right of the //stiffness matrix multiplier// value;
 +  * select the just defined ''modulate_stiffmatmult'' table as the modulating one, hence hit''OK'' and ''OK'' again to return back at the material properties menu
 +  * in this way, I defined damping as a function of the $\alpha$ e $\beta$ coefficients introduced by the Rayleigh proportional damping model, with zero $\alpha$ and hence no contribution of the mass matrix. In particular $\zeta = \frac{1}{2}(\frac{\alpha}{2 \pi f}+2 \pi f \beta)$ with $\alpha=0$ and $\beta= 0.01 \cdot g(f)=\frac{0.01}{\pi f}$, from which $\zeta=0.01$ as desired.
 +  * enter the ''MAIN -> JOBS'' menu and create a copy of the undamped harmonic response job by hitting the ''COPY'' top left button and by setting a new job name;
 +  * enter the job ''PROPERTIES'' menu, and reach the ''ANALYSIS OPTIONS'' submenu; activate the  ''COMPLEX DAMPING'' options within the //dynamic harmonic// section, and then exit with''OK''
 +  * Enter the ''JOB RESULTS'' submenu and deactivate ''Stress'', ''Equivalent von Mises stress''
 +  * substitute them with the //AVAILABLE ELEMENT SCALARS//
 +    * '' Equivalent Real Harmonic Stress '', layers ''MAX & MIN''
 +    * '' Equivalent Imag Harmonic Stress '', layers ''MAX & MIN''
 +    * the //REAL HARMONIC// e //IMAG HARMONIC// stress resultant equivalents for the beam elements, ''DEFAULT'' layer, and the ''Beam Orientatio Vector''
 +  * insert from the //AVAILABLE ELEMENT TENSORS// block
 +    * '' Real Harmonic Stress '', layers ''ALL''
 +    * '' Imag Harmonic Stress '', layers ''ALL''
 +  * run the simulation as usual with ''RUN -> SUBMIT''
 +  * open the post file as usual with ''OPEN POST FILE (RESULTS MENU)''
 +  * The deformed shape may be visualized //according to a given phase// within the oscillation cycle (see also the ''DEFORMED SHAPE SETTINGS'' menu); in the absence of damping the fase was limited to the 0° and 180° values, cases these that may be represented with the bare variation in sign of the stress and displacement components to be monitored. 
 +  * Please note that the real component has a 0° phase ($\cos(\omega t)$ modulation) whereas the imaginary component has a 270° phae ($-\sin(\omega t)$ modulation). 
 +  * Please also note that in resonance conditions the **imaginary component** becomes dominant and reaches the peak values, whereas the real component vanishes (resonant response is in fact ~90° out of phase with respect to the real, 0° excitation).
 +  * Lets e.g. collect the displacement in $z$ direction of the node at the center of the excited wheel contact area:
 +    * enter the POSTPROCESSING ''RESULTS'' menu, with opened t16 result file, and proceed within the ''HISTORY PLOT'' submenu
 +    * define the locations for the response sampling with ''SET LOCATIONS'', hence click on the desired node[s], and finalize with ''END LIST''
 +    * define the range of the sub-increments to be collected with ''INC RANGE'', and then entering at the prompt ''0:1'' [enter], ''0:397'' [enter], ''1'' [enter], as the sampling beginning, end and step.
 +    * proceed with the definition of collected response diagrams by entering th ''ADD CURVES'' menu, and then''ALL LOCATIONS'' (a single location has been selected); select the ''Frequency'' global variable as the abscissa, and the ''Displacement Z Magnitude'' nodal variable as the ordinate. The ''FIT'' scales the axes to contain all the sample points. 
 +    * By hitting ''RETURN'' I may return to the HISTORY PLOT menu, where the label density may be reduced  ''SHOW IDS'' from '1' to '10'; by entering a  '0' value labels are hidden.
 +  * response peaks are now finite (they were theoretically unbounded in the absence of damping), and peaks disappear in correspondence of natural modes that are weakly coupled with the exciting force. In the absence of damping, bounded response at resonance is obtained for **strictly uncoupled** natural modes only.
 + 
 +</hidden> 
 +
 +hellow
 +
 +**Poor man dynamic response animated view**
 +
 +{{ :wikialtro2018:animacomp.proc | MSC.Mentat procedure for creating poor man harmonic response animations}}
 +
 +{{ :wikifemfuchde2019:animamodipropri.proc | MSC.Mentat procedure for creating poor man natural mode animations}}
 +
 +
 +**Structural damping references**
 +
 +
 +{{ :wikipaom2017:structural_damping_values_jdstevenson.pdf |}}
 +
 +{{ :wikipaom2017:damping_cross-reference_and_material_properties.pdf |}}
 +
 +{{ :wikipaom2017:f_orban_damping_of_materials_and_members_in_structures.pdf |}}
 +
 +{{ :wikipaom2017:tom_irvine_damping_in_bolted_and_welded_joints.pdf |}}
 +
 +{{ :wikipaom2017:estratto_afwal-tr-84-3089v2_dampingvalues.pdf |estratto}} vol. 2, sezione 8 di Soovere, J., and M. L. Drake. Aerospace Structures Technology Damping Design Guide.LOCKHEED-CALIFORNIA CO BURBANK, 1985.
 +
 +==== Loadcases ====
 +
 +  * Static test: torsional stiffness;
 +    * preliminary suspension stroke motion test ({{:wikitelaio2016:telaio_monocoque_comeimportato_tutorial_optistruct.mud|original Optistruct tutorial version}} m( );
 +    * rigid spring or rigid anti-roll bar?
 +  * Front, right wheel bump loadcase (inertia relief);
 +  * Frontal crash absorber collapse loadcase (inertia relief); at the element faces belonging to the ''crash_absorber_bearing_area'' set (an approx. 155x320 mm area at the front bulkhead), a 25 psi = 0,172 MPa distributed pressure is applied which is due to the honeycomb absorber crushing  (see {{ :wikitelaio2017:plascore_crushlite.pdf |datasheet}}).
 +  * Dynamic modal response;
 +  * Dynamic  harmonic response: vertical harmonic load at the front, right wheel, 1-100 Hz range, sampled at 0.25Hz resolution ((100-1)*4+1 = 397 steps);
 +
 +==== Connectors ====
 +{{:wikipaom2015:cinematica_rbe3_v1.pdf|RBE3 link kinematics}}.
 +{{ :wikifemfuchde2020:rbe3.pdf |RBE3 moment distribution}}.
 +{{ :wikipaom2019:dimostratore_rbe2_vs_rbe3.mud |rbe2 vs rbe3 demonstrator}}.
wikifemfuchde2020/phoneyfsaechassis.txt · Ultima modifica: 2020/05/28 16:40 da ebertocchi