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INTRODPUCTION

The equations which represent the torsion of an elastic bar of any uniform cross-
section are of exaotly the same form as those which represent the displacement of
a soap film, due to a slight pressure acting on its surface, the film being stretched
over a hole in a flat plate of the same shape as the cross-section of the bar. The
theory of this relationship is briefly outlined, and it is shown that advantage may be
taken of the analogy to find the stresses and torsional stiffness of a twisted bar or
shaft of any cross-section whatever, by making appropriate measurements of soap
films. The method is technically useful because there is no restriction on the shape of
sections with which it is capable of dealing, whereas the number of cases in which the
equations can be solved analytically is extremely limited.

The apparatus used for measuring filmsis described and illustrated, and examples
of its use are given. These include simple geometrical figures, for which the results of
the soap-film method may be checked by calculation, and also two instances of
technically important sections which are not amenable to mathematical treatment.
In the first of these, the magnitude of the stress in an internal corner, and its
dependence on the radius of the fillet, are investigated, while in the second the
stresses and torque of a twisted aeroplane wing spar, of I section, are discussed, and
comparisons between the results of the method and those of some direct torsion
experiments are given. '

Finally, a number of general theorems relating to, and approximate formulae for,
the stiffness and strengths of shafts and beams, are obtained with the help of the
soap-film analogy. Itis shown, by comparison with other results, that it is possible
to deduce thus, in nearly every case, figures for those torsional data usually required
in practice, which are within a small percentage of the exact values. The superiority
of these formulae over those now in use appears to be due to the introduection, it is
believed for the first time, of the length of the perimeter of the cross-section as a
factor, This was suggested almost immediately by the soap-film analogy, and is an
instance of the value of the latter as a means of forming a clear idea of the nature of
the torsion problem.

* With A. A, GRIFFITH,

I BSP



2 Scientific Papers [1

GENERAL CONSIDERATIONS

In the old theory of the torsion of shafts or beams of uniform cross-section, which
was originated by Coulomb, it was agsumed that sections of the bar, initially plane
and st right angles to the axis of torsion, remained so when the bar was twisted, and
that the only strains set up were those due to the relative rotation of adjacent
sections about the axis. :

In his classical memoir on the mathematical theory of torsion, Saint-Venant
showed that the assumptions made by Coulomb were valid only in the case of
circular shafts, either solid or having concentric circular holes. In every other
instance the initially plane section is distorted into a curved surface, and the stresses
and strains set up in the bar eannot be caiculated until the shape of this curved
surface has been found.

A complete discussion of the theory of torsion put forward by Saint-Venant would
be out of place in the present Paper, It is fully dealt with in books on the mathe-
matical theory of elasticity, among which the treatise of Professor Love* may be
mentioned, Tt is necessary to remark, however, that he showed how to reduce the
problem to that of finding a function of the co-ordinates of points on the cross-
section, which satisfies a certain partial differential equation. There is, however, no
known general analytical method of finding this function for any assigned cross-
section, and therefore the torsion problem cannot be solved mathematically for the
great majority of technically important sections.

A simple method of determining these stresses would be of the very greatest
assistance in general engineering work, and even more so in the many fresh problems
which have to be dealt with in aeronautical calculations. In the very complex
sections which oceur in this work, such as those of airscrew blades, and the many
forms of spars and struts, ete., used, it is of the highest importance that correct
knowledge should be available, and therefore the authors have carried out work at
the Royal Aircraft Factory, Farnborough, with a view to solving the problem by
means of a simple experimental method. The following is a very brief description
of the method which has been developed.

A hole is cut, in a thin plate, of the section required to be investigated, and
a circular hole of a predetermined diameter is cut alongside it. The plate is placed in
a box and soap films are stretched across the holes. The films are blown out slightly
by reducing the air pressure on one side of them. By making suitable measurements
of the shape of the resulting film surfaces, as will be explained later, it is possible to
find the stresses in a bar of the given section, in terms of the stresses in a circular bar
of the same diameter as the circular hole, when the two bars are twisted through the
same angle per unit length. It is equally easy, by means of other measurements, to
find the ratio of the torques which must be applied to the two bars in order to
produce the same twist in each. It will readily be seen that by thls means the most
complicated sections can be dealt with.

* A. E. H. Love, Mathematical Theory of Elasticity, 2nd ed., chap. x1v.
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The experimental work is described in the body of the paper, while the mathe-
matical theory of the method is diseussed in an Appendix.

EXPERIMENTAL METHODS

It is seen from the mathematical discussion given in the Appendix (p. 20), that, in
order that full advantage may be taken of the information on torsion which soap
films are capable of furnishing, apparatus is required with which three kinds of
measurements can be made, namely: ’

(A) Measurements of the inclination of the film to the plane of the plate at any
point, for the determination of stresses.

(B) Determination of the contour lines of the film.

{(C) Comparison of the displaced volumes of the test film and circular standard
for finding the corresponding torque ratio.. : .

The available means of measurement will now be enumerated under these three
heads.

(A) For this purpose optical reflection methods naturally suggest themselves.
In the apparatus used by the authors, the image of an electric-lamp filament is
viewed in the film in such a way that the reflected ray is coincident with the incident
one, 5o that their common direction gives the inclination of the normal to the surface
of the film. This experiment may conveniently be referred to as the measurement,
of angles by auto-collimation. :

{B) Formapping contour lines, a steel needle point, moistened with soap solution,
is arranged to move about over the plate carrying the film, its distance therefrom
being adjustable by means of a micrometer screw. The point is made to approach the
film till the distortion of the image in the latter shows that contact has occurred. This
position is remarkably definite, so much so, indeed, that it is possible, with ordinary
care, to limit the error in the measurement of the normal co-ordinate to + 0-001in,
This method of mapping contours will be referred to as the ‘spherometer’ method.
Another method, which was suggested to the authors by Mr Vernon Boys, F.R.S.,
though not so convenient as the one already described, is, nevertheless, useful in
affording a ready means of exhibiting the shape of the contour lines to the eye. If
a film be left undisturbed for, say, 15min., owing to drainage and consequent
thinning of the film, a black spot appears at the highest point and gradually increases
in size till, after the lapse of several hours, it may include the whole surface of the
film. Tts edge is quite sharply defined and is horizontal. Hence, if the plate has been
levelled up beforehand, the edge of the black spot coincides at any moment with
a-contour line of the film.

(C) The most obvious way of measuring the displaced volume of the films is o
blow them wp by running a known volume of water, or, preferably, soap solution,
into the apparatus from a pipette or burette. The volume of the circular film may be
calculated from the observed value of the inclination at its boundary, since its
surface is a portion of a sphere, and hence the volume of the other film may be

I-2
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obtained by difference. The most accurate results are obtained by giving the film
a slight initial displacement before running in the known volume of liquid, and
measuring the difference of the inclinations at the boundary of the circular film.

Another method, which requires a certain amount of practice, but which has the
advantage of great simplicity, is to blow up the two films, observe the angle at the
edge of the circular one, and then carefully place a flat plate, moistened with soap
solution, on the test film, so as to cover it completely, until the flat plate is in contact
with the test-plate. The total volume is then contained in the civeular film, and it
can be determined in the ordinary way by again observing the inclination. Hence
the volume of the test film may be found.

DRESCRIPTION OF APPARATUS

In the apparatus used by the authors, the films are formed on holes cut to the
required shapes in flat aluminium plates, of no. 18 s.w.g. thickness. The plates are
held in a horizontal position during the experiment, and the edges of the holes are
chamfered off on the underside, to an angle of about 45°, in order to fix the plane of
the boundary. The soap solution used is that recommended by Mr Boys, namely,
pure sodium or potassium oleate, glycerine and distilled water. It may be obtained
ready for use from Messrs Griffin, Kingsway, London.

The photograph (plate 1) shows the apparatus in which the films are formed, and
also illustrates the construction of the spherometer. The test-plate is clamped
between the two halves of the cast-iron box 4. The lower part of this box takes the
form of a shallow tray %in. deep, blackened inside and supported on levelling
screws, while the upper portion is simply a square frame carrying the clamping
studs and enamelled white inside. A three-way cock communicates with the former
and a plain tube with the latter. The film shown in the photograph represents
a section of an airscrew blade. It will be noticed that a black spot has commenced
to form at the top of the bubble.

The spherometer apparatus consists of a screw B, of 1mm. pitch, passing
through a hole in a sheet of plate glass }in. thick and sufficiently large to cover the
box in any possible position. It slides about on the flat upper face of the latter. The
lower end of the screw carries a hard steel point C, tapering about 1 in 4, and its
divided head moves beside a fixed vertical scale. Fixed above the screw and in its
centre line is the steel recording point D. The record is made on a sheet of paper
fixed to the board E, which can swing about a horizontal axis at the same height
as .D. To mark any position of the serew, it is merely necessary to prick a dot on the
paper by bringing it down on the recording point.

In the auto-collimator (plate 1), light from the straight filament of the 2V.
bulb A4 is reflected from the surface of the film through a V-nick B and a pin-hole
eyepiece C, placed close to the lamp and shaded from direct light by a small screen.
The inclinometer D, which measures the angle which the optical axis makes with the
vertical, consists of a spirit level, of 6 ft. radiusg, fixed to an arm which moves over
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a quadrant graduated in degrees. The apparatus is mounted, by means of a stiff-
jointed link, on a tripod stand weighted with lead. Fine adjustment of angle is made
with a screw.

MurTHOD OF USING APPARATUS

In using the soap-film apparatus, the test-plate and lower half of the test-box, which
must both be perfectly clean, are moistened with soap solution and clamped
together by means of the upper frame. The soap solution not only forms an airtight
joint between the plate and box, but also serves to saturate the air within the
apparatus, so that evaporation from the surface of the film is minimized. The edges
of the holes are now tested with the spherometer point; if they are not parallel to
the plane of motion of the glass plate they must be adjusted. A film is then drawn
across the holes by means of a strip of celluloid wetted with soap solution fresh from
the stock bottle and the glass cover immediately replaced. The blowing up should
be done by suction from the tube in the upper frame, and not by blowing through
the stopcock, as the carbon dioxide introduced by the latter method might affect
the life of the film adversely. Measurements may now be made as desired. It should
be remembered that if the auto-collimator is used, the apparatus must be levelled up
beforehand.

In the case of the spherometer, the point, previously moistened with fresh
solution, is set to a given height and made to touch the film at a number of positions,
which are marked on the paper. This is repeated for as many contour lines as may be
required. The plate need not be levelled. A contour map taken in this way is to be
seen on the board (plate 1).

Usually, the use of the auto-collimator is confined to the determination of
inclinations at given points on the boundary, which are marked by scratches on the
plate. It is better for stress measurements than the contour-line method, since it
gives the inclination directly, whereas in the other case the latter can only be found
by a graphical differentiation. The use of the optical method may be extended to
the finding of inclinations at points other than those on the boundary, with the help
of the spherometer, in the following manner. The outline of the experimental hole is
marked on the paper by means of the recording point, and the position of the point
for which the stress is desired is added. The glass plate is adjusted until the recording
point coincides with it. The needle is serewed down till it just touches the film, and
its height is noted. It is then screwed back till the film breaks away and finally
brought down again to within one- or two-thousandths of an inch of ite former
beight. The auto-collimator is now adjusted till the image of the filament is seen in
the film just below the needle-point. The reading of the inclinometer then gives the
required angle.

AccurAacy or Resvrnts

Strictly speaking, the soap-film surface can only be taken to represent the torsion
funetion if its inclination v is everywhere so small that siny=tan y to the required
order of accuracy. This would mean, however, that the quantities measured would
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be so small as to render excessive experimental errors unavoidable, A compromise
must therefore be effected. In point of fact, it has been found from experiments on
. sections for which the torsion function can be calculated, that the ratio of the stress
at a point in any section to the stress at a point in a cireular shaft, whose radius
equals the value of 24 /P for the section, is given quite satisfactorily by the value of
sin y/sin g, where y and u are the respective inclinations of the corresponding films,
even when 7 is as much as 35°. Similarly, the volume ratio of the films has been
found to be a sufficiently good approximation to the corresponding torque ratio, for
a like amount of displacement,

In contour mapping, the greatest accuracy is obtained, with the apparatus at
Present in use, when x4 is about 20°. That is to say, the displacement should be rather
less than for the other two methods of experiment.

Table 1. Showing experimental error 1n determining stress
by means of soap films

Radius
of - Error ¥rror
circle o B8 True aff sinafsinf
Section (in) (deg.) (deg.) o/ sinafsing value (%) (%)
1 Equilateral triangle: 1-:00 3255 21-19 1-536 1490 - 1500 424 -0-7
height, 3 in, .
2 Square: side, 3 in. 1-5 20-11 21-34 1-36¢ 1-337 1-850 <410 —-1.0
3 Ellipse: semi-axes, 1-296 380-71 2432 1-263 1-240 1-234 +24 +05
2% 1in. . . '
4 Ellipse: 3 X 1 in. 1-410 31-10 2400 1-296 1.270 1-276  +1-6 —-05
5 ZElipse:4x0-8in. 1196 35-35 26-58 1-331 1-293 1286 435 +0-5
6 Rectangle: 4x 2in. 1-333 3170 22:36 1418 1-380 1-395  +16 —-11
7 Rectangle: 8 X 21in, 160 34-83 27-23 . 1-279  1:247 1245  4-2-7 +9-2
*8 Infinjtely long rectangle: 1-00 36-42 3619 1006 1.005 1-:000 406 +9-5
1 in. wide

* On 4 in. length.

In all soap-film measurements the experimental error is naturally greater the
smaller the value of 24 /P. Reliable results cannot be obtained, in general, if 24 /P
ig less than about half an inch, so that a shape such as a rolled T beam section could
not be treated satisfactorily in an apparatus of convenient size. As a matter of fact,
however, the shape of a symmetrical soap film is unaltered if it be divided by
a septum or flat plate which passes through an axis of symmetry and is normal to
the plane of the boundary. It is therefore only necessary to cut half the section in
the test-plate and to place & normal septum of sheet metal at the line of division.
This device, for the suggestion of which the authors are indebted to the late Dr C.V.
Burton, may also be employed in many other cases where contour lines are so nearly
normal to the septum that they are not sensibly altered by its introduction. An
I beam, for instance, might be treated by dividing the web at a distance from the
flange equal to two or three times the thickness of the web. It has been found
advisable to carry the septum down through the hole so that it projects about 4 in.
below the underside of the plate, as, otherwise, solution collects in the corners and
spoils the shape of the film.
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The values set down in table 1 indicate the degree of accuracy obtainable with
the auto-collimator in the determination of the maximum stresses in sections for
which the torsion fanction is known. They also give an idea of the sizes of holes
which have been found most convenient in practice. The angles given are () the
maximum inclination at the edge of the test film, and () the inclination at the edge
of the circular film of radius 24/P. They are usually the means of about five observa.-
tions and are expressed in decimals of a degree. |

The last two columns show the errors due to taking the ratio of angles and the
ratio of sines respectively as giving the stress ratio.

The error is always positive for o/f, and its mean value is 1-98 %,. In the case of
gine/sin § the average error is only 0-62 %,. In only two instances does the error
reach 1 %, and in both it is negative. The presence of sharp cornersseems to introduce
a negative error which is naturally greatest when the corners are nearest to the
observation point. Otherwise, there is no evidence that the error depends to any
great extent on the shape. Nos, 4, 5, 7 and 8 in the table are examples of the applica-
tion of the method of normal septa. |

Table 2 shows the results of volume determinations made on each of the sections
1--8 given in the previous table.

Table 2. Showing experimental error in defermining torques
- by means of soap films

Maximum Observed Caleulated

inclination volume torque Error
No, Section (deg.) ratio ratio %) -
1 Equilateral triangle; height, 3in, 32-06 1-953 1-985 —1-6
2 Square: side, 3 in. 30-3% 1-418 1-432 —11
3 Ellipse: semi-axes, 2x 1in, 30-50 1-143 1-133 +0-9
4 Ellipse: 3x 1 in. ' 31-01 2147 2-147 . 0
5 Ellipse: 4% 0-8 in, 36-12 3-041 3-020 + 07
] Rectangle: sides, 4 X 2 in. 31-33 1-456 . 1475 —-13
7 Rectangle: 8 x 2 in. 35-28 1749 1-744 . +0-3
*8 Infinitely long rectangle 36-00 0-858 0-848 +1-2

* On 4 in. length.

The average error is 0-89 %,. In four of the eight cases. considered the error is
greater than 19, and in three of these it is negative. One may conclude that the
probable error is somewhat greater than it is for the stress measurements, and that
it tends to be negative. Its upper limit is probably not much in excess of 2 %,. The
remarks already made regarding the dependence of accuracy on the shape of the
section apply equally to torque measurements.

As additional confirmation of the correctness of solutions of the torsion problem
obtained by the soap-film method, some experiments on wooden beams may be
cited. In the first of these, a walnut plank was shaped so that its section was exactly
the same as the hole in one of the test-plates, which represented a section of an air-
screw blade, of fineness ratio 10-55, having its thickest part about a third of the way
from the leading edge. The value of the modulus of rigidity, N, was found by
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performing a torsion test on this plank, using the expression for the torque given by
a soap-film experiment on the plate which was used in shaping the plank. N was
found to be 0-1355 x 108]b. per sq.in. Five circular rods were then cut from the
plank and their rigidities were measured. The mean value of N found in this way
was 0-1387 x 109, a difference of only 2-3 %,.

Similar experiments were made on three lengths of spruce wing-spar, of T section.
The results are set down in table 3. Column A shows the value of NV, obtained by
twisting the spar, using the figure for torque obtained by soap films. Columns B
and C show the values of N found from round specimens cut from the thickest part
of the two flanges, while eolumn D gives the percentage difference between A and
the mean of B and C.

Table 3. Comparison of soap-film results with those of direct torsion experiments

A B c D
Spar no. Ib. per sq.m. Ib. per sqan. Ib. per sq.in. (%)
1 0-10921 x 108 0-1172 x 108 0 1063 x 10¢ 2:5
2 00873 0 0640 0-0966 8-7
3 0-1156 0 1200 0-1151 17

The comparatively large discrepancy in no. 2 is probably due to the extra-
ordinarily large variation of N over this particular spar.

When contour lines have been mapped, the torque may be found from them by
integration. If the graphical work is carefully done, the value found in this way
is rather more accurate than the one obtained by the volumetric method. Contours
may also be used to find stresses by differentiation, that is, by measuring the
distance apart of the neighbouring contour lines; but here the comparison is
decidedly in favour of the direct process, owing to the difficulties inseparable from
graphical differentiation. The contour map is, nevertheless, a very useful means of
showing the general nature of the stress distribution throughout the section in
a clear and compact manner. The highly stressed parts show many lines bunched
together, while few traverse the regions of low stress, and the direction of the resultant
stress 1s shown by that of the contours at every point of the section. Furthermore,
the map solves the torsion problem, not only for the boundary, but also for every
section having the same shape as a contour line.

ExrrriMmenTAan REsvLnrTs

The two examples which follow serve to illustrate the use of the soap-film apparatus
in solving typical problems in design: ‘

(1) It is well known that the stress at a sharp internal corner of a twisted bar is
infinite or, rather, would be infinite if the elastic equations did not cease to hold
when the stress becomes very high. If the internal corner is rounded off the stress
is reduced; but so far no method hag been devised by which the amount of reduction
In strain due to a given amount of rounding can be estimated. This problem has been
solved by the use of soap films,
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An L-shaped hole was cut in a plate. Its arms were 5in. long by 1in. wide, and
small pieces of sheet metal were fixed at each end, perpendicular to the shape of the
hole, so as to form normal septa. The section was then practically equivalent to an
angle with arms of infinite length. The radius in the internal corner was enlarged
step by step, observations of the maximum inclination at the internal corner being
taken on each occasion.

The inclination of the film at a point 3-5in. from the corner was also observed, and
was taken to represent the mean boundary stress in the arm, which is the same as
the boundary stress at a point far from the corner. The ratio of the maximum stress
at the internal corner to the mean stress in the arm was tabulated for each radius on
the internal corner. The results are given in table 4.

Table 4. Showing the effect of rounding the internal corner on the
strength of a twisted L-shaped angle beam

Radms of Radias of
mternal corner Ratio: maximum stress mternal corner abio: maxIum stress

(in.) gtress 1n arm {mn.) Stress I arm
0-10 1-800 Q70 1-415

0-20 1-540 0-80 1-416

0-30 1480 100 1:422

0-40 1-445 1-50 1-500

0 50 1-430 2:00 1-660

0-60 1-420

I I
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Fig. 1. Stress in mternal corner.

It will be seen that the maximum stress in the internal corner does not begin to
increase to any great extent till the radius of the corner becomes less than one-fifth
of the thickness of the arms. A curious point which will be noticed in connection
with the table is the minimum value of the ratio of the maximum stress to the stress
in the arm which occurs when the radius of the corner is about 0-7 of the thickness
of the arm.

In fig. 1 is shown a diagram representing the appearance of these sections of
angle-irons.

No. 1 is the angle-iron for which the radius of the corner is one-tenth of the thick-
niess of the arm. This angle is distinctly weak at the corner.

In no. 2 the radius is one-fifth of the thickness. This angle-iron is nearly as strong
as it can be. Very little inorease in strength is effected by rounding off the corner
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more than this. No. 8 is the angle with minimum ratio of stress in corner to stress
i arm.

A further experiment was made to determine the extent of the region of high
stress in angle-iron no. 1. For this purpose contour lines were mapped, and from

Table 5. Showing the rate of falling off of the stress in the
internal corner of the angle-iron

Distance from Distance from )
boundary Ratio: stress at pomnt boundary  Rotio. stress at point
(m.) boundary stress 1n arm {m.) boundary stress in arm
000 1-89 030 049
005 1-36 0-40 024
0-10 1-12 0-50 000
0-20 077

0-222"0-20"016 012" 0-08" 0-04"

\ [ L7

/] 4 2

e d inches
Fig. 2. Lines of shearing stress in the torsion of a wooden spar to scale. The figures
give the heights of the contour-lmes of the corresponding soap film. Stress at any

pomt=2-70 N7 sin. » Ib. per sqan., where » 15 the mnchnation of the film. Torque on half
section =4-09 N7 m.lb.

thege the slope of the bubble was found at a number of points on the line of sym-
metry of the angle-iron. Hence the stresses at these points were deduced. The
results are given in table 5.
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Tt will be seen that the stress falls off so rapidly that its maximum value is to
all intents and purposes a matter of no importance, if the material is capable of
yielding. If the material is brittle and not ductile a crack would, of course, start at
the point of maximum stress and penetrate the section.

(2) The diagram shown in fig. 2, which represents the half-section of a wooden wing
spar, is & good example of the contour-line method. The close grouping of the lines
near the internal radii, denoting high stress, is immediately evident. The projecting
parts of the flange are lightly stressed and contribute little to the torsional staffness.
The stress at the middle of the upper face is, however, considerable, being in fact
next in order of magnitude below that in the radii. The stress near the middle of the
web is practically constant and equal to that in a very long rectangular section of
the same thickness under the same twist.

A further point of interest is that the ‘unstressed fibre’ is very near the centre
of the largest circle which can be inscribed in the section. It will also be observed
that the three points of greatest stress are almost coincident with the points of
contact of the circle. The maximum stress is about 1-89 times the mean boundary
stress.

The figures given below the diagram for the values of the stress and torque on the
section fully confirm the generally accepted notions regarding the extreme weakness
of I beams in torsion.

GENERAL DEDUCTIONS FROM THE SOAP-FILM ANALOGY

One of the greatest advantages of considering the torsion problem from the soap-
film standpoint arises from the circumstance that it is very much easier to form
a mental picture of a soap bubble than it is to visualize the complicated system of
shear-strains in a twisted bar. It cannot be too strongly urged that the surest way
of forming a clear idea of the nature of the torsion problem is to blow a few soap
films on boundaries of various shapes. This can be done with the simplest of
apparatus; the holes may be cut in plates of thin sheet metal, which can be luted on
to the top of a biscuit tin with vaseline or soft soap. To blow the films up it is only
necessary to bore a hole in the bottom of the tin and stand it in a vessel containing
water. Two sections may readily be compared by cutting them in the same plate.
A simple way of estimating inclinations is to view the image of the eye in the film
and adjust the arm of a clinograph so that it lies along the line of sight. Black spots,
as previously mentioned, may be observed if arrangements are made to cover the
films with a sheet of glass, in order to exclude dust and air currents.

With the aid of simple apparatus of this kind the truth of theorems, such as those
contained in the following list, may be readily demonstrated:

(@) The stress distribution (and therefore the torque) for any section is inde-
Pendent of the axis of twist. This is easily seen, since the shape of the soap film is
completely determined by the boundary and the value of 4S/p. Hence the torque
on a number of bars clamped together at their ends may be found by adding the
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separate torques which would be necessary to twist each through the same angle.
This, as in other cases, applies to torsion only. It will be realized that in practice
there will be bending stresses which must be taken account of in the usual way.

(8) Any addition of material to a section must increase the torque, and vice versa,
s0 long as the distribution of material in the original section is unaltered.

(¢) Any cut made in a section, whether it decreases the area or not, must decrease
the torque.

(d) The stress at any point of the boundary of a section is never less than the
boundary stress in a circular bar under the same twist, whose radius is equal to that
of the circle inscribed in the section, which touches the boundary at the point in
question.

More generally, if one section lie entirely inside another, so as to touch it at two
or more points, the stresses in the inner figure are less than those in the outer one
at the points of contact; if the two figures are approximately congruent in the
neighbourhood of the points of contact, the difference between the stresses is small.
The maximum stress in & section is not greater than 2aN7, where a is the radius of
the largest inscribed cirele, unless the boundary is concave, that is, re-entrant.

(e) If a concave part of the boundary approximates to a sharp corner, the stress
at this point may be very high, and if the curvature is infinite then the stress is also
theoretically infinite, whatever be the situation of the corner with respect to the
rest of the section. Actually, of course, if the material is ductile, we can only deduce
that the stresses at such a corner are above the elastic limit.

(f) 1t is a consequence of (¢) that it does not necessarily follow that the making
of a cut in a section will reduce its strength, whether material is removed or not. As
an example of this, one may quote the case of an angle-iron in which the internal
corner is quite sharp. It is well known in practice that this will often fracture. It
may be strengthened, however, by reducing the section, planing out a semicircular
groove at the root of the angle-iron.

(g) There can be no discontinuous changes of stress anywhere in a secfion,
exeepting only those parts of the boundary where the curvature is infinite (concave
or convex sharp corners).

(h) The maximum stress occurs at or near one of the points of confact of the
largest inscribed cirele, and not, in general, at the point of the boundary nearest the
centroid, as has been hitherto assumed. An exception may occur if, at some other
part of the boundary, the curvature is (algebraically) considerably less (that is, the
boundary is more concave) than it is at this point.

(#) If a section which is long compared with its greatest thickness be bent so that
its area and the length of its median line are unchanged, its torque will not be
greatly changed thereby. For instance, the torsional stiffness of a metal plate is
practically unaltered by folding or rolling it up into the form of an L or a split tube.
Soap-film experiments show, in fact, that there is a diminution of less than 5 9, when
the inner radius of the boundary is not less than the thickness at the bend.

(7) The ‘unstressed fibre’, which is situated at the point corresponding with the
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maximum ordinate of the soap film, is near the centre of the largest circle which can
be inscribed in the section.

In general, the inscribed circle has a maximum value wherever it touches the
boundary at more than two points, and there is usually an unstressed fibre near the
centre of each of these circles. Between each pair of maximum ordinates on the goap
film, however, there i a ‘minimax’ point, which is near the centre of the corre-
sponding minimum insoeribed cirele. This fibre in the bar is also unstressed.

(%) The ‘lines of shearing stress’ round the unstressed fibres of the first sort are
initially ellipses, and round those of the second sort hyperbolae, from which shapes
they gradually approximate to that of the boundary. Notions of this sort are useful
in practice, because it is possible, with their help, to sketch in the general nature of
the lines of shearing stress for any section.

APPROXIMATE FORMULAE FOR TORQUES AND STRESSES

The torque on any section is given by
T=N7C,

where C is a quantity of the fourth degree in the unit of length, which may be calied
the torsional stiffness of the section.

In the case of a circular shaft, in which there is no distortion of cross-sections, C'is
equal to the polar moment of inertia, so that we have

C=14r%
where 7 is the radius of the circle.
In the general case we may put
C=31A4k2%

k is a length, which, by analogy with the circle, may be called the ‘equivalent
torsional radius’ of the section.

It is seen (see Appendix, p. 20) that the mean stress round the boundary of any
section is equal t0 the boundary stress in a circular shaft whose radius equals the
quantity 24/P, which we have called . This result suggested that some fairly
simple approximate relation might be found between A and k.

When this idea was tested by application to known results, it became immediately
evident that the fraction k/k was not very different from unity for a large number
of sections. It was observed, however, that the presence of sharp outwardly pro-
jeeting corners tended to make % greater than A, while the opposite effect was
noticed in the case of sections whose length was great compared with their greatest
thickness. For instance, » for the square is equal to a, the radius of the inscribed
circle, whereas k is about 6 ¢/, greater. In the equilateral triangle % is still equal to a,
while k is 9 9/, greater. For long rectangles and ellipses, however, k is considerably
less than &.

At first sight, since, in many sections, these two effects are operating simul-
taneously, it might be thought that their separation, with a view to formulating
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a method of finding & empirically, would be a matter of some difficulty. It has been
accomplished, however, by a process of successive trial, with the result that the
empirical treatment about to be described has been evolved. The curves giving the
values of the constants were found by plotting the values they should have for all the
sections, for which a solution has been obtained, in order to get the correct result,
and then drawing the best eurves through these points. |

If the figure contains sharp, outwardly projecting corners, construct a new figure
by rounding off each corner with a radius r, which is a certain fraction of @, the radius
of the largest inscribed circle. The value of this fraction depends on the angle 4,
turned through by the tangent to the boundary in passing round the corner in
question. In fig. 8 (p. 15), r/a is shown graphically as a function of 6/n, and, in
addition, & table of values is subjoined:

- Ofm ria Ofm rla
0-0 1-00 06 0375
01 093 07 0-270
02 085 0-8 0-210
0-3 075 09 0170
0-4 0-625 10 0155
0-5 0-500

If the area of this new figure be called 4,, and its perimeter F, the value of 24,/P,
is a close approximation to the % of the original boundary, subject to the second
reodification, which must be made for long sections. |

It is not difficult to see that a certain amount of common sense may be required in
applying the above rule. For instance, if the figure has a projection which is slightly
rounded instead of being quite sharp, the value of r is that which would be used if
the projection did run out to a sharp point. In most cases of this sort, however, it is
found that the correction makes little difference.

The criterion, which has been adopted for fixing the value of the correction factor
for long sections, is the fraction a/h. Where this is appreciably less than unity, the
stiffness caloulated by the process already described should be multiplied by the
correction factor X, which is given in table 6, and which is also shown graphically -
in fig. 4. -

The expression for C now takes the form

| 24.,\2
C=1KA (uﬁ;) :

This formula is quite satisfactory for figures such as triangles; squares, ellipses,
ete., in which ¢ has one maximum value only, which may be called ‘simple sections’,
but if @ has more than one maximum the solution in its present form is ambiguous,
and it is necessary to split the section up into two or more parts, which will be referred
to as the ‘components’ of the original figure. The stiffness of each component must
be found separately and the total stiffness obtained by addition.

In order to evolve a method of division, it is to be noted that the process already
described is based on the equality of the resultant air pressure and surface-tension
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forces acting on the a.nalogoué soap film. If the film is divided by a series of ‘normal
septa’, which are so arranged that they are everywhere at right angles to the contour
lines which they cut, the equilibrium equations are in no way altered, and the
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Fig. 3. Values of rja in terms of 8/, Fig. 4. Values of torque factor K in
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Table 6

afh K : afh K
1-:00 1-000 0:70 0-897
0-95 0-998 065 0-848
0-90 0-094 0:60 0793
0-85 0-984 0-55 0-732
080 0-066 _ 0-50 0-667

075 0-938

theorem is still true of each separate part of the film. Hence, if the section is divided
in this way, the empirical treatment explained above should be applicable to each
component. It is to be noted, however, that the term ‘perimeter’ must be taken to
mean that part of the boundary of the component which formed part of the
perimeter of the original figure. The remainder is not, strictly speaking, part of the
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boundary at all. It remains to formulate rules for the division of these ‘compound’
sections. - '
Imagine a cirele to be drawn in the section so as to fouch the boundary at two
points. Now let the centre of this circle move through the figure, the radius being
varied simultaneously so that there is always contact at two points. At some places

-t —— -

Fig. 5. Subdivision of compound sections.

the circle will touch at three (or more) points. It is then an ‘inseribed circle of
maximum radius’, and between every such pair of maxima there must be a position
where the radius is a minimum. The section should be divided by straight lines
passing through the points of contact of these minimum circles,

In some cases, such ag the web of an T beam, there is a long thin parallel portion,
and the position of the minimum circle is indeterminate. Here the line of division
should be at a distance from the commencement of the parallel part equal to half its
thickness. The portion of the web cut out may be treated separately as part of an
infinitely long thin rectangle, the torsional properties of which are well known. If
the piece cut off is ‘closed’ at the other end (e.g. the arm of an angle), it may be
treated as a separate component. It is advisable to cut off all long, thin, projecting
parts in the same way, even though the sides are not quite parallel. The tapering
flanges of T beams may be cited in illustration. |

Fig. 5 shows some typical examples of the subdivision of compound sections, and
also illustrates the rounding off of sharp corners. The I beam, for instance, has seven
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components, the channel five, and the tee four, In the 45° sector there is only one
component. The angle turned through at the apex is 135°, so that §{7 =0-75. Hence,
from table 5 (p. 10), r=0-24a (2 is the radius of the chain-dotted circle). At the other
two corners f/m =0-5, and hence.r = 0-5a.

" In the case of certain sections, another form of expression may be arrived at by
a more direct method. Consider a soap film on a long narrow slit of varying width,
If the rate of change of width with length is nowhere large, we may neglect the
longitudinal curvature §22/82? of the film, and put the transverse curvature 4%/8y?

Table 7
C C " FError
Section (formula) (calculated) (%)

Square: side 2s 2.240,8¢ 224954 0
Rectangle: sides 2b, 3b 4-71056% 4-698bH +0-26
sides 2b, 40 7-32064 7-31854 —0-03
sides 2b, 10b ' 23-1564 23-3154 —0-68

sides 25, 21 (I o0} 18 B3 18 ps 0
Ellipse: axes 2b, 3b 3-250b% 3-260b4 - 0-31
axes 2b, 4b 503554 502561 +40:20
axes 2b, 10k 15-14b4 15-10b4 -+ 0-26
axes 2b, 21 (I — ) 3-235153 7ibs -+8-00
Equilateral triangle: side 2s 0-347684 0-3464.5% -+ 0-27
45° gector: radius B _ 0-01810R4¢ 9-01815R¢ —0-27
90° sector: radius B 0-0830R1 0-0824 R4 +0-78
Curtate sector: 180°, B,=2R, 1-355Rg 1:369R} —1-02

equal to a constant B, say. If the width at a distance x from one end be ¥, and
the total length I, we readily obtain the volume, V, of the film in the form

1 [ 3 dlos
_V=mf0y -

This result must be exact for an indefinitely long rectangle, whence we have, by
comparison with the known stiffness of the latter,

;
O=—1-f y3de=1, say,
3Jo

for the torsional stiffness of any long thin section. |
A consideration of the case of ellipses suggests the modification

I
I
1-{-4225

U=

to allow for the longitudinal curvature of the figure.

The expression is now exact for all ellipses, whatever their fineness ratio, and, as
will be seen, its error is within the limits of accuracy of soap-film measurements, for
sections such as those of airscrew blades, down to a fineness ratio of two, at least.

-2 , BSP
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The formula may also be applied, though with somewhat less aceuracy, to thin
sections having a curved median line, provided that z is measured along the latter
and y at right angles thereto.

Tables 7, 8 and 9 have been prepared to indicate the degrees of accuracy which
may be expected in the application of the preceding formulae.

Table 8
Section C (formula) C (soap film)
Wing spar: 2% x 14 m., (T section) 0-0678 n.% 0 0680 n.*
3 x 11 m. (T section) 0-1042 1n.* 0-1051 n.*
Angle; 3 x 8 in, 0-478 1n.t 0-487 .4
Alrscrew section: A 11-70 in.2 11792 m.4
B 744 .2 7-50 m 4
e 2:42 in 4 2-38 1n.4
D 0-846 m.4 0 835 in.4
Table 9
Section ¢ (formula) C (experiment)
Angle: 1-176 x 1:175 m. 0-01234 .2 001284 m 4
1-00x 1-00 1n. 0-00440 m.4 0-00455 1n,4
Tee: 1:58 x 1-58 m. 0 01451 1n.* 001481 .4
T. beam: 5-01 x 8-02 . 1-160 .t 1-140 in.%
3:01 x 300 m. 0-1179 in.4 0-1082 m 2
1-75 % 4-78 m. 00702 in.4 0-0635 in.t
Channel: ¢-97 x 2:00 in. 0-0175 in4 0-0139 in 4

In table 7, comparison is made with the results of Saint-Venant’s exact analysis;
in table 8 the second column of values has been obtained from soap-film measure-
ments; while in table 8 the results of the method are compared with those of some
direct torsion experiments on rolled beams, carried out by Mr E. G. Ritchie.*

It will be seen that all the figures in table 9 show good agreement with the
exception of those referring to the last three beams. In view of the remarks made by
the author cited in regard to the want of homogeneity of rolled beams, and more
particularly the comparative weakness of the metal in the internal radii, the dis-
crepancy in these cases cannot be considered unsatisfactory.

The method of calculating C should be chosen according to the nature of the
section.

If there is only one maximum inscribed circle, and the section is not a long thin
one, proceed by the method of rounding off sharp corners and finding 24, /P, etc.

If the section is compound, divide it into its components and then proceed as
before. Alternatively, if some of the components are thin compared with their

length, they may be dealt with by finding fy3 dex.
If the median line of the section is long in comparison with the greatest thickness,

straighten out the median line where necessary and use the f y2dx method.

* A Study of the Circular Arc Bow Qirder, by Gibson and Ritchie (Constable and Co. 1914).
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EsTiMATION OF STRESSES

The empirical calculation of the stress at any given point of a section is naturally
a matter of greater difficulty than the determination of torques. If the section
gontains no re-entrant angles, the stresses at the three points of contact of the
inscribed circle of maximum radius @ are usually given sufficiently well by the

expression % o
— [1 +0-15 (m2—~— ,
1 4-m? P

where m is the quantity ma?/4 and p is the radius of curvature of the boundary.

In the case of a ‘compound’ section, the formula may be applied to each com-
ponent separately.

Table 10
Stress/N7 Stress/N~
Section (formula) {true)
2ab? 2ab*
Eﬂlpae. axes 2@, 2b m W
Square: side 2s 1-35s 1-35¢
Rectangle: sides 2s, 3s 1-64s 1-69s
sdes 2s, 45 1:77s 1-86s
sides 2s, 8s 1.94¢ 1-99s
sides 2s 2-00s 2 00s
Equlateral triangle: sides 2./3s 1-53s 1-50s
Wing spar (I) a=1-05 in. 2-14 2-18%
Wing spar (I} a=127 1n, 2-60 2-58%

* Determined by soap films,

The mean value of the stress round the boundary of any component is accurately
equal to 2N74/P. By combining this value with those obtained for the maximum
stresses, and bearing in mind the general properties of soap films, it is possible to
sketch in a boundary stress diagram for the component, with sufficient accuracy
for most purposes.

Obviously the formula cannot be expected to apply to points where the boundary
is concave—that is, re-entrant angles, since it fails to differentiate between an acute
re-entrant angle and an obtuse one. It is possible to devise a formula which will take
account of this angle and which will fit any assigned number of observed results
within, say, 4 or 5 ¢/, but such a formula naturally becomes more complicated as its
range of applicationis increased, and hence the practical utility of such generali-
zation is doubtful. Probably the most satisfactory way of dealing with re-entrant
8Sections is to make soap-film measurements and to deduce, from these, formulae
or curves which apply to one particular class of figure only.

It should be mentioned, however, that the formula given has been found to agree
Wwith soap-film measurements on a number of re-entrant sections, in which the angle
is approximately a right angle, when p is not very small. I beams, channels and tees
are examples of such sections, to which the formula may be applied. It should be
borne in mind, however, that p is now negative.
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The stress at any point of a rolled standard section may be taken to be 2aN7, where
@ is the radius of the inseribed circle which touches at that point, except at places
near the end of a flange, where the stress is smaller. The same thing holds for figures
such as airserew sections, when the fineness ratio is greater than about eight.

MATHEMATICAL APPENDIX

The solution of the problem of torsion can be made to depend (see the book referred
to in the introduction) on the finding of a function, ¥, of # and y, the co-ordinates
of points on the cross-section, which satisfies the partial differential equation

Snp O

—+—=+2=0 1

2 T EE T | (1)
at all points of the cross-section, and is zero at all points on the bounding curve.

Consider the equations which represent the surface of a soap film stretched over

a hole of the same size and shape as the cross-section of the twisted bar, cut in a flat

plate, the film being slightly displaced from the plane of the plate by a small

presstre p.

If 8 be the surface tension of the soap solution, the equatlon of the surface of the
film is

6% 8% p '

52t aE e~ @)

where z is the displacement of the film and x and y are the same as before. Round
the boundary, of course, z=0.

It will be seen that if z is measured to such a scale that i =48%(p, then the two
equations are identical. It appears, therefore, that the value of ¢ corresponding
with any values of  and y can be found by measuring the quantities /8 and z on.
the soap film. | -

To put the matter in another hght the soap filmisa graphieal representation of
the function ¥ for the given cross-section. Actual values of ¢ can be obtained from -
it by multiplying the ordinates by 4S/p.

If NV is the modulus of rigidity of the material and 7 the twist per unit length of
the bar, the shear stress at any point of the cross-section can be found by multiplying
the slope of the ¢ surface at the point by N7, so that, if y is the molmatmn of the
bubble to the plane of the plate, the stress is

A= | 3)

The torque T' on the bar is given by ‘
7= 2N7-U¢dxdy

or | | T= %SNTV ' (4)

where ¥ is the volume enclosed between the film surface and the plane of the plate.



1] Use of Soap Films in Solving Torsion Problems 21

The contour lines of the soap film in planes parallel to the plate correspond to the
‘lines of shearing stress’ in the twisted bar, that is, they run parallel to the direction
of the resultant shear stress at every point of the section.

Tt is evident that the torque on and stresses in a twisted bar of any section what-
ever may be obtained by measuring soap films in these respects.

In order to obtain quantitative results, it is necessary to find the value of 48/p in
each experiment. This might be done by measuring S and p directly, but a much
simpler plan is to determine the curvature of a film, made with the same soap
solation, stretched over a circular hole and subjected to the same pressure difference,
p, between its two surfaces, as the test film.

The curvature of the eircular film may be measured by observing the maximum
inclination of the film to the plane of its boundary.

If this angle be called u, then

48 h

p sing’

(5)

where  is the radius of the circular boundary.

The most convenient way of ensuring that the two films shall be under the same
pressure is to make the circular hole in the same plate as the experimental hole,

It is evident that, since the two films have the same constant 48/p, we may, by
comparing inclinations at any desired points, find the ratio of the stresses at the
corresponding points of the cross-section of the bar under investigation to the
stresses in & circular shaft of radius % under the same twist. Equally, we can find the
- ratio of the torques on the two bars by comparing the displaced volumes of the soap
films. This is, in fact, the form which the investigations usually take.

As a matter of fact, the value of 48/p can be found from the test film itself by
integrating vy, its inclination, round the boundary. If 4 be the area of the cross-
section, then the equilibrium of the film requires that

~f2S sinyds=pA. | (6)

This equation may be written in the form
45 95 o area of cross-section 7
P "7 (perimeter of cross-section) x (mean value of siny)” )

By measuring y all round the boundary the mean value of siny can be found, and
.hence 48/p may be determined. This is, however, more laborious in practice than
the use of the circular standard.

It is evident that if the radius of the circular hole be made equal to the value of
24P, where A is the area and P the perimeter of the test hole, then sin y=mean
value of siny. It is convenient to choose the radius of the circular hole so that it
satisfies this condition, in order that the quantities measured on the two films may
be of the same order of magnitude. |
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The corresponding theorem in the torsion problem states that the mean stress
round the boundary of a twisted bar is equal to the stress at the boundary of a
circular shaft of radius 24/P. It is shown in the text that this property can be made
the basis of a method of approximating to the torsional stiffness of any bar by
calculation.

SYMBOLS AND FORMULAE USED IN THE PAPER

N =modulus of rigidity of material.
7=twist of bar in radians per unit of length.
A =area of cross-section of bar.
P =length of perimeter of cross-section,
h=2A[P,
[, =shear stress in bar.
f,=shear stress in circular bar of radius % under twist 7.
T =torque applied to bar.
T, =torque applied to circular bar to give twist 7.
¥ =inclination of soap film blown on a hole of the same shape as the twisted bar.
p=inclination of film blown on & circular hole of radius .
V =displaced volume of the test-film.
¥, =displaced volume of the circular film.
S =guriace tension of soap solution.
= pressure difference causing displacement.
C=T[Nr.
k=‘equivalent torsional radius.’
a =radius of inscribed circle.
r =radius for rounding projecting corners.
0 = angle turned through at a corner by the tangent to the boundary.
A, =area of modified section, when the corners have been rounded off.
P, =perimeter of modified section.
K =torque correction factor.

)
I =é—f y3dx, the integration being taken along the median line of the section
0

(¢ =length of median line}.
7ra’

mm—:g—.

p=radius of curvature of boundary of section.

48
(1) fsz'"ENTY'

(2) T=%§N7V.

48§ h
(3) —_— T
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fe _siny . . .
(4) 7" sop’ for any pair of points on the sections.

T V
A

2A1 2 . . !
(6) C=3%KA - for asimple section or for any component of a compound section.
1
(7) CO= ! Vs for a long thin section.
v

(8) Stresses at points of contact of inseribed circles of maximum radius o
2aNT g O
(9) Mean stress round the boundary of any section

24
fs= '""P“NT.

(10) Stress at any point of the boundary of a rolled standard section
fs =2alNT

(@ is the radius of the inscribed circle which touches at the point in question).



