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Chapter 1

Fundamentals of Finite
Element Method for
structural applications

1.1 Introduction
Briefly. Missing.Missing.

1.2 Preparatory formulations
1.2.1 Interpolation functions for some elementary do-

mains
Quadrilateral domain. A quadrilateral domain is considered whose
vertices are conventionally located at the [−1, −1], [1, −1], [1, 1] and
[−1, 1] points of an adimensional [𝜉, 𝜂] plane coordinate system, see
Figure. Scalar values 𝑓𝑖 are associated to a set of nodal points P𝑖 ≡
[𝜉𝑖, 𝜂𝑖], which for the present case coincide with the quadrangle vertices,
numbered as in figure.

A 𝑓(𝜉, 𝜂) interpolation function may be devised by defining a set
of nodal influence functions 𝑁𝑖(𝜉, 𝜂) to be employed as the coefficients
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Figure 1.1: Quadrilateral elementary domain (a), and a representative
weight function (b).

(weights) of a moving weighted average

𝑓(𝜉, 𝜂) def= ∑
𝑖

𝑁𝑖(𝜉, 𝜂)𝑓𝑖 (1.1)

Requisite for such weight functions are that

• the influence of a node is unitary at its location, whereas other
nodes influence locally vanishes

𝑁𝑖(𝜉𝑗, 𝜂𝑗) = 𝛿𝑖𝑗 (1.2)

• for each point of the domain, the sum of the weights is unitary

∑
𝑖

𝑁𝑖(𝜉, 𝜂) = 1, ∀[𝜉, 𝜂] (1.3)

Moreover, functions should be continuous and straightforwardly differ-
entiable up to any required degree.

Low order polynomials are ideal candidates for the application; for
the particular element, the nodal weight functions may be stated as

𝑁𝑖(𝜉, 𝜂) def= 1
4 (1 ± 𝜉) (1 ± 𝜂) , (1.4)

where sign ambiguity is resolved for each 𝑖-th node by enforcing Eqn.
1.2.
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The (1.3) combination of 1.4 turns into a generic linear relation in
(𝜉, 𝜂) with coplanar – but otherwise arbitrary – (𝜉𝑖, 𝜂𝑖, 𝑓𝑖) points.

Further generality may be introduced by not enforcing coplanarity.
The weight functions for the four-node quadrilateral are in fact

quadratically incomplete1 in nature due to the presence of the 𝜉𝜂 prod-
uct, and the absence of any 𝜉2, 𝜂2 term. Each term, and the combined
interpolation function 𝑓(𝜉, 𝜂), defined as in Eqn. 1.1, behave linearly
if restricted to 𝜉 = const. or 𝜂 = const. loci – namely along the four
edges, whereas quadratic behaviour may arise along a general direc-
tion, e.g. along the diagonals, as in the Fig. 1.2.1b example. Such
behaviour is called bilinear.

We now consider the 𝑓(𝜉, 𝜂) weight function partial derivatives.
The partial derivative

𝜕𝑓
𝜕𝜉 = (𝑓2 − 𝑓1

2 )⏟⏟⏟⏟⏟
[∆𝑓/∆𝜉]12

(1 − 𝜂
2 )⏟

𝑁1+𝑁2

+ (𝑓3 − 𝑓4
2 )⏟⏟⏟⏟⏟

[∆𝑓/∆𝜉]43

(1 + 𝜂
2 )⏟

𝑁4+𝑁3

= 𝑎𝜂 + 𝑏 (1.5)

linearly varies from the incremental ratio value measured at the 𝜂 = −1
lower edge, to the value measured at the 𝜂 = 1 upper edge; the other
partial derivative

𝜕𝑓
𝜕𝜂 = (𝑓4 − 𝑓1

2 ) (1 − 𝜉
2 ) + (𝑓3 − 𝑓2

2 ) (1 + 𝜉
2 ) = 𝑐𝜉 + 𝑑. (1.6)

similarly behaves, with 𝑐 = 𝑎. However, partial derivatives in 𝜉, 𝜂
remain constant along the corresponding differentiation direction 2.

1.2.2 Gaussian quadrature rules for reference domains.
Reference one dimensional domain. The gaussian quadrature
rule for approximating the definite integral of a 𝑓(𝜉) function over
the [−1, 1] reference interval is constructed as the customary weighted
sum of internal function samples, namely

∫
1

−1
𝑓(𝜉)𝑑𝜉 ≈

𝑛
∑
𝑖=1

𝑓(𝜉𝑖)𝑤𝑖; (1.7)

1or enriched linear, as discussed above and in the following
2The relevance of such partial derivative orders will appear clearer to the reader

once the strain field will have been derived in paragraph XXX.
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Its peculiarity is to employ location-weight pairs (𝜉𝑖, 𝑤𝑖) that are
optimal with respect to the polynomial class of functions. Nevertheless,
such choice has revealed itself to be robust enough for a more general
use.

Let’s consider an 𝑚-th order polynomial

𝑝(𝜉) def= 𝑎𝑚𝜉𝑚 + 𝑎𝑚−1𝜉𝑚−1 + … + 𝑎1𝜉 + 𝑎0

whose exact integral is

∫
1

−1
𝑝(𝜉)𝑑𝜉 =

𝑚
∑
𝑗=0

(−1)𝑗 + 1
𝑗 + 1 𝑎𝑗

The integration residual between the exact definite integral and the
weighted sample sum is defined as

𝑟 (𝑎𝑗, (𝜉𝑖, 𝑤𝑖)) def=
𝑛

∑
𝑖=1

𝑝(𝜉𝑖)𝑤𝑖 − ∫
1

−1
𝑝(𝜉)𝑑𝜉 (1.8)

The optimality condition is stated as follows: the quadrature rule
involving 𝑛 sample points (𝜉𝑖, 𝑤𝑖), 𝑖 = 1 … 𝑛 is optimal for the 𝑚-
th order polynomial if a) the integration residual is null for general
𝑎𝑗 values , and b) such condition does not hold for any lower-order
sampling rule.

Once observed that the zero residual requirement is satisfied by any
sampling rule if the polynomial 𝑎𝑗 coefficients are all null, condition
a) may be enforced by imposing that such zero residual value remains
constant with varying 𝑎𝑗 terms, i.e.

{𝜕𝑟 (𝑎𝑗, (𝜉𝑖, 𝑤𝑖))
𝜕𝑎𝑗

= 0, 𝑗 = 0 … 𝑚 (1.9)

A system of 𝑚 + 1 polynomial equations of degree 𝑚 − 1 is hence ob-
tained in the 2𝑛 (𝜉𝑖, 𝑤𝑖) unknowns; in the assumed absence of redun-
dant equations, solutions are not allowed if the constraints outnumber
the unknowns, i.e. 𝑚 > 2𝑛 − 1. Limiting our discussion to the thresh-
old condition 𝑚 = 2𝑛−1, an attentive algebraic manipulation of Eqns.
1.9 may be performed in order to extract the (𝜉𝑖, 𝑤𝑖) solutions, which
are unique apart from the pair permutations3.

3 In this note, location-weight pairs are obtained for the gaussian quadrature
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𝑛 𝜉𝑖 𝑤𝑖

1 0 2
2 ± 1√

3 1

3 0 8
9

±√3
5

5
9

4
±√3

7 − 2
7√6

5
18+

√
30

36

±√3
7 + 2

7√6
5

18−
√

30
36

Table 1.1: Integration points for the lower order gaussian quadrature
rules.

Eqns. 1.9 solutions are reported in Table 1.1 for quadrature rules
with up to 𝑛 = 4 sample points4.

It is noted that the integration points are symmetrically distributed
with respect to the origin, and that the function is never sampled at

rule of order 𝑛 = 2, aiming at illustrating the general procedure. The general
𝑚 = 2𝑛 − 1 = 3rd order polynomial is stated in the form

𝑝(𝜉) = 𝑎3𝜉3 + 𝑎2𝜉2 + 𝑎1𝜉 + 𝑎0, ∫
1

−1
𝑝(𝜉)𝑑𝜉 = 2

3𝑎2 + 2𝑎0,

whereas the integral residual is

𝑟 = 𝑎3 (𝑤1𝜉3
1 + 𝑤2𝜉3

2)+𝑎2 (𝑤1𝜉2
1 + 𝑤2𝜉2

2 − 2
3)+𝑎1 (𝑤1𝜉1 + 𝑤2𝜉2)+𝑎0 (𝑤1 + 𝑤2 − 2)

Eqns 1.9 may be derived as

⎧{{
⎨{{⎩

0 = 𝜕𝑟
𝜕𝑎3

= 𝑤1𝜉3
1 + 𝑤2𝜉3

2 (𝑒1)
0 = 𝜕𝑟

𝜕𝑎2
= 𝑤1𝜉2

1 + 𝑤2𝜉2
2 − 2

3 (𝑒2)
0 = 𝜕𝑟

𝜕𝑎1
= 𝑤1𝜉1 + 𝑤2𝜉2 (𝑒3)

0 = 𝜕𝑟
𝜕𝑎0

= 𝑤1 + 𝑤2 − 2 (𝑒4)

which are independent of the 𝑎𝑗 coefficients.
By composing (𝑒1 − 𝜉2

1𝑒3) /(𝑤2𝜉2) it is obtained that 𝜉2
2 = 𝜉2

1; 𝑒2 may then be
written as (𝑤1 + 𝑤2)𝜉2

1 = 2/3, and then as 2𝜉2
1 = 2/3, according to 𝑒4. It derives

that 𝜉1,2 = ±1/
√

3. Due to the opposite nature of the roots, 𝑒3 implies 𝑤2 = 𝑤1,
relation, this, that turns 𝑒4 into 2𝑤1 = 2𝑤2 = 2, and hence 𝑤1,2 = 1 .

4see https://pomax.github.io/bezierinfo/legendre-gauss.html for higher
order gaussian quadrature rule sample points.
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the {−1, 1} extremal points.

General one dimensional domain. The extension of the one di-
mensional quadrature rule from the reference domain [−1, 1] to a gen-
eral [𝑎, 𝑏] domain is pretty straightforward, requiring just a change of
integration variable to obtain the following

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝑏 − 𝑎

2 ∫
1

−1
𝑓 (𝑏 + 𝑎

2 + 𝑏 − 𝑎
2 𝜉) 𝑑𝜉,

≈ 𝑏 − 𝑎
2

𝑛
∑
𝑖=1

𝑓 (𝑏 + 𝑎
2 + 𝑏 − 𝑎

2 𝜉𝑖) 𝑤𝑖.

Reference quadrangular domain. A quadrature rule for the refer-
ence quadrangular domain of Figure XXX may be derived by nesting
the quadrature rule defined for the reference interval, see Eqn. 1.7,
thus obtaining

∫
1

−1
∫

1

−1
𝑓 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂 ≈

𝑝
∑
𝑖=1

𝑞
∑
𝑗=1

𝑓 (𝜉𝑖, 𝜂𝑗) 𝑤𝑖𝑤𝑗 (1.10)

where (𝜉𝑖, 𝑤𝑖) and (𝜉𝑗, 𝑤𝑗) are the coordinate-weight pairs of the two
quadrature rules of 𝑝 and 𝑞 order employed for spanning the two coor-
dinate axes. The equivalent notation

∫
1

−1
∫

1

−1
𝑓 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂 ≈

𝑝𝑞
∑
𝑙=1

𝑓 ( 𝜉 𝑙) 𝑤𝑙 (1.11)

emphasises the characteristic nature of the 𝑝𝑞 point/weight pairs for
the domain and for the quadrature rule employed; a general integer
biiection {1 … 𝑝𝑞} ↔ {1 … 𝑝} × {1 … 𝑞}, 𝑙 ↔ (𝑖, 𝑗) e.g.

{𝑖 − 1; 𝑗 − 1} = (𝑙 − 1) mod (𝑝, 𝑞), 𝑙 − 1 = (𝑗 − 1)𝑞 + (𝑖 − 1) (1.12)

may be utilized to formally derive the two-dimensional quadrature rule
pairs

𝜉 𝑙 = (𝜉𝑖, 𝜂𝑗) , 𝑤𝑙 = 𝑤𝑖𝑤𝑗, 𝑙 = 1 … 𝑝𝑞 (1.13)

from their uniaxial counterparts.
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General quadrangular domain. The interpolation functions in-
troduced in Paragraph ?? may be be profitably employed in defining a
coordinate mapping between a general quadrangular domain – see Fig.
XXXx – and its reference counterpart.

In particular, we first define the 𝜉 𝑖 ↦ x 𝑖 mapping for the coordi-
nates of the four vertices5 in the natural (or reference) 𝜉, 𝜂 and in the
physical 𝑥, 𝑦 reference systems. Then, a mapping for the inner points
may be derived by interpolation, namely

x ( 𝜉 ) =
4

∑
𝑖=1

𝑁𝑖 ( 𝜉 ) x 𝑖 (1.14)

The availability of an inverse 𝜉 ( x ) mapping is not granted; in par-
ticular, a closed form representation for such inverse is not generally
available6.

The rectangular infinitesimal area 𝑑𝐴𝜉𝜂 = 𝑑𝜉𝑑𝜂 in the neighbor-
hood of a 𝜉⋆, 𝜂⋆ location, see Figure XXXa, is mapped to the quadrangle
of Figure XXXb, which is composed by the two triangular areas

𝑑𝐴𝑥𝑦 = 1
2! ∣

1 𝑥 (𝜉⋆ , 𝜂⋆ ) 𝑦 (𝜉⋆ , 𝜂⋆ )
1 𝑥 (𝜉⋆ + 𝑑𝜉, 𝜂⋆ ) 𝑦 (𝜉⋆ + 𝑑𝜉, 𝜂⋆ )
1 𝑥 (𝜉⋆ , 𝜂⋆ + 𝑑𝜂) 𝑦 (𝜉⋆ , 𝜂⋆ + 𝑑𝜂)

∣ +

+ 1
2! ∣

1 𝑥 (𝜉⋆ + 𝑑𝜉, 𝜂⋆ + 𝑑𝜂) 𝑦 (𝜉⋆ + 𝑑𝜉, 𝜂⋆ + 𝑑𝜂)
1 𝑥 (𝜉⋆ , 𝜂⋆ + 𝑑𝜂) 𝑦 (𝜉⋆ , 𝜂⋆ + 𝑑𝜂)
1 𝑥 (𝜉⋆ + 𝑑𝜉, 𝜂⋆ ) 𝑦 (𝜉⋆ + 𝑑𝜉, 𝜂⋆ )

∣ (1.15)

where the determinant formula for the area of a triangle, shown below
along with its 𝑛-dimensional symplex hypervolume generalization

𝒜 = 1
2! ∣

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

∣ , ℋ = 1
𝑛!

∣
∣
∣
∣

1 x 1
1 x 2
⋮ ⋮
1 x 𝑛+1

∣
∣
∣
∣

(1.16)

is employed. By operating a local multivariate linearization of 1.15
matrix terms,

5The condensed notation 𝜉 𝑖 ≡ (𝜉𝑖, 𝜂𝑖), x 𝑖 ≡ (𝑥𝑖, 𝑦𝑖) for coordinate vectors is
employed.

6For a given �̄� physical point, however, Newton-Raphson iterations rapidly con-
verge to the 𝜉 ( x̄ ) solution if the centroid is supplied for algorithm initialization,
see Section XXX
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𝑑𝐴𝑥𝑦 ≈ 1
2! ∣

1 𝑥⋆ 𝑦⋆

1 𝑥⋆ + 𝑥⋆
,𝜉𝑑𝜉 𝑦⋆ + 𝑦⋆

,𝜉𝑑𝜉
1 𝑥⋆ + 𝑥⋆

,𝜂𝑑𝜂 𝑦⋆ + 𝑦⋆
,𝜂𝑑𝜂

∣ +

+ 1
2! ∣

1 𝑥⋆ + 𝑥⋆
,𝜉𝑑𝜉 + 𝑥⋆

,𝜂𝑑𝜂 𝑦⋆ + 𝑦⋆
,𝜉𝑑𝜉 + 𝑦⋆

,𝜂𝑑𝜂
1 𝑥⋆ + 𝑥⋆

,𝜂𝑑𝜂 𝑦⋆ + 𝑦⋆
,𝜂𝑑𝜂

1 𝑥⋆ + 𝑥⋆
,𝜉𝑑𝜉 𝑦⋆ + 𝑦⋆

,𝜉𝑑𝜉
∣

is obtained, where 𝑥⋆, 𝑦⋆ and 𝑥⋆
,𝜉, 𝑥⋆

,𝜂, 𝑦⋆
,𝜉, 𝑦⋆

,𝜂 are the 𝑥, 𝑦 functions
and their first order partial derivatives, as sampled at the 𝜉⋆, 𝜂⋆ point;
infinitesimal terms of higher order than 𝑑𝜉𝑑𝜂 are neglected .

After some matrix manipulations7 the following expression is ob-
tained

𝑑𝐴𝑥𝑦 = ∣
1 0 0
0 𝑥⋆

,𝜉 𝑦⋆
,𝜉

0 𝑥⋆
,𝜂 𝑦⋆

,𝜂

∣ 𝑑𝜉𝑑𝜂 = ∣𝑥
⋆
,𝜉 𝑦⋆

,𝜉
𝑥⋆

,𝜂 𝑦⋆
,𝜂

∣
⏟⏟⏟⏟⏟

|𝐽T(𝜉,𝜂)|

𝑑𝐴𝜉𝜂 (1.17)

that equates the ratio of the mapped and the original areas to the
determinant of the transformation (transpose) Jacobian matrix8.

Once carried out the preparatory passages, we obtain

∬
𝐴𝑥𝑦

𝑔(𝑥, 𝑦)𝑑𝐴𝑥𝑦 = ∬
1

−1
𝑔 (𝑥 (𝜉, 𝜂) , 𝑦 (𝜉, 𝜂)) |𝐽(𝜉, 𝜂)| 𝑑𝜉𝑑𝜂, (1.18)

thus reducing the quadrature over a general domain to its reference
domain counterpart, which has been discussed in the paragraph above.

7 For both the determinants, the first column is multiplied by 𝑥⋆ and subtracted
to the second column, and then subtracted to the third column once multiplied by
𝑦⋆. The first row is then subtracted to the others. On the second determinant alone,
both the second and the third columns are changed in sign; then, the second and
the third rows are summed to the first. The two determinants are now formally
equal, and the two 1/2 multipliers are summed to unity. The 𝑑𝜉 and the 𝑑𝜂 factors
may then be collected from the second and the third rows, respectively.

8The Jacobian matrix for a general 𝜉 ↦ x mapping is in fact defined according
to

[𝐽( 𝜉 ⋆)]𝑖𝑗
def= 𝜕𝑥𝑖

𝜕𝜉𝑗
∣

𝜉 = 𝜉 ⋆
𝑖, 𝑗 = 1 … 𝑛

being 𝑖 the generic matrix term row index, and 𝑗 the column index

8
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Based on Eqn. 1.11, the quadrature rule

∬
𝐴𝑥𝑦

𝑔(x )𝑑𝐴𝑥𝑦 ≈
𝑝𝑞
∑
𝑙=1

𝑔 ( x ( 𝜉 𝑙)) ∣𝐽( 𝜉 𝑙)∣ 𝑤𝑙 (1.19)

is derived, stating that the definite integral of a 𝑔 integrand over a
quadrangular domain pertaining to a physical 𝑥, 𝑦 plane (𝑥, 𝑦 may be
dimensional quantities, namely lengths) may be approximated by

1. defining a reference to physical domain mapping based on vertex
physical coordinates interpolation;

2. sampling the function at physical locations which are the images
of the Gaussian integration points obtained for the reference do-
main;

3. proceeding with a weighted sum of the collected samples, where
the weights consist in the product of the adimensional 𝑤𝑙 Gauss
point weight (suitable for integrating on the reference domain),
and of a dimensional area scaling term consisting in the determi-
nant of the transformation Jacobian matrix, as evaluated locally
at the Gauss point.

9
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1.3 Basic theory of plates
P displacement components as a function of the Q reference point mo-
tion.

𝑢𝑃 = 𝑢 + 𝑧 (1 + ̃𝜖𝑧) 𝑠𝑖𝑛 𝜙 (1.20)
𝑣𝑃 = 𝑣 − 𝑧 (1 + ̃𝜖𝑧) 𝑠𝑖𝑛 𝜃 (1.21)
𝑤𝑃 = 𝑤 + 𝑧 ((1 + ̃𝜖𝑧) 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃) − 1) (1.22)

̃𝜖(𝑧) = 1
𝑧 ∫

𝑧

0
𝜖𝑧𝑑𝜍 (1.23)

= 1
𝑧 ∫

𝑧

0
(−𝜈𝜖𝑥 − 𝜈𝜖𝑦) 𝑑𝜍 (1.24)

P displacement components as a function of the Q reference point
motion, linarized with respect to the small rotations and small strain
hypotheses.

𝑢𝑃 = 𝑢 + 𝑧𝜙 (1.25)
𝑣𝑃 = 𝑣 − 𝑧𝜃 (1.26)
𝑤𝑃 = 𝑤 (1.27)

Relation between the normal displacement 𝑥, 𝑦 gradient (i.e. the
deformed plate slope), the rotations and the out-of-plane, interlaminar,
averaged shear strain components.

𝜕𝑤
𝜕𝑥 = ̄𝛾𝑧𝑥 − 𝜙 (1.28)

𝜕𝑤
𝜕𝑦 = ̄𝛾𝑦𝑧 + 𝜃 (1.29)

Strains at point P.
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Figure 1.2: Relevant dimensions for describing the deformable plate
kinematics.
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𝜖𝑥 = 𝜕𝑢𝑃
𝜕𝑥 = 𝜕𝑢

𝜕𝑥 + 𝑧 𝜕𝜙
𝜕𝑥 (1.30)

𝜖𝑦 = 𝜕𝑣𝑃
𝜕𝑦 = 𝜕𝑣

𝜕𝑦 − 𝑧 𝜕𝜃
𝜕𝑦 (1.31)

𝛾𝑥𝑦 = 𝜕𝑢𝑃
𝜕𝑦 + 𝜕𝑣𝑃

𝜕𝑥 (1.32)

= (𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥) + 𝑧 (+𝜕𝜙
𝜕𝑦 − 𝜕𝜃

𝜕𝑥) (1.33)

Generalized plate strains: membrane strains.

̄𝜖 = ⎛⎜⎜
⎝

𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥

⎞⎟⎟
⎠

= ⎛⎜
⎝

̄𝜖𝑥
̄𝜖𝑦

̄𝛾𝑥𝑦

⎞⎟
⎠

(1.34)

Generalized plate strains: curvatures.

𝜅 = ⎛⎜⎜
⎝

+𝜕𝜙
𝜕𝑥

− 𝜕𝜃
𝜕𝑦

+𝜕𝜙
𝜕𝑦 − 𝜕𝜃

𝜕𝑥

⎞⎟⎟
⎠

= ⎛⎜
⎝

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

⎞⎟
⎠

(1.35)

Compact form for the strain components at P.

𝜖 = ̄𝜖 + 𝑧 𝜅 (1.36)

Hook law for an isotropic material, under plane stress conditions.

D = 𝐸
1 − 𝜈2

⎛⎜
⎝

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎞⎟
⎠

(1.37)

Normal components for stress and strain, the latter for the isotropic
material case only.

𝜎𝑧 = 0 (1.38)
𝜖𝑧 = −𝜈 (𝜖𝑥 + 𝜖𝑦) (1.39)

Stresses at P.
𝜎 = D 𝜖 = D ̄𝜖 + 𝑧 D 𝜅 (1.40)

12
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(b)
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θ
φ

Figure 1.3: Positive 𝜅𝑥𝑦 torsional curvature for the plate element.
Subfigure (a) shows the positive 𝛾𝑥𝑦 shear strain at the upper surface,
the (in-plane) undeformed midsurface, and the negative 𝛾𝑥𝑦 at the
lower surface; the point of sight related to subfigures (b) to (d) are also
evidenced. 𝜃 and 𝜙 rotation components decrease with 𝑥 and increase
with 𝑦, respectively, thus leading to positive 𝜅𝑥𝑦 contributions. As
shown in subfigures (c) and (d), the torsional curvature of subfigure (b)
evolves into two anticlastic bending curvatures if the reference system
is aligned with the square plate element diagonals, and hence rotated
by 45∘ with respect to 𝑧.
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Membrane (direct and shear) stress resultants (shear flows).

q = ⎛⎜
⎝

𝑞𝑥
𝑞𝑦
𝑞𝑥𝑦

⎞⎟
⎠

= ∫
ℎ

𝜎 𝑑𝑧 (1.41)

= ∫
ℎ

D 𝑑𝑧
⏟

A

̄𝜖 + ∫
ℎ

D 𝑧𝑑𝑧
⏟

B

𝜅 (1.42)

Bending and torsional moment stress resultants (moment flows).

m = ⎛⎜
⎝

𝑚𝑥
𝑚𝑦
𝑚𝑥𝑦

⎞⎟
⎠

= ∫
ℎ

𝜎 𝑑𝑧 (1.43)

= ∫
ℎ

D 𝑧𝑑𝑧
⏟

B ≡ B T

̄𝜖 + ∫
ℎ

D 𝑧2𝑑𝑧
⏟⏟⏟⏟⏟

C

𝜅 (1.44)

Cumulative generalized strain - stress relations for the plate (or for
the laminate)

( q
m ) = ( A B

B T C ) ( ̄𝜖
𝜅 ) (1.45)

Hook law for the orthotropic material in plane stress conditions,
with respect to principal axes of orthotropy;

D 123 = ⎛⎜⎜
⎝

𝐸11−𝜈12𝜈21
𝜈21𝐸11−𝜈12𝜈21

0
𝜈12𝐸21−𝜈12𝜈21

𝐸21−𝜈12𝜈21
0

0 0 𝐺12

⎞⎟⎟
⎠

(1.46)

⎛⎜
⎝

𝜎1
𝜎2
𝜏12

⎞⎟
⎠

= T 1
⎛⎜
⎝

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎞⎟
⎠

⎛⎜
⎝

𝜖1
𝜖2

𝛾12

⎞⎟
⎠

= T 2
⎛⎜
⎝

𝜖𝑥
𝜖𝑦

𝛾𝑥𝑦

⎞⎟
⎠

(1.47)

where
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T 1 = ⎛⎜
⎝

𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2
⎞⎟
⎠

(1.48)

T 2 = ⎛⎜
⎝

𝑚2 𝑛2 𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2
⎞⎟
⎠

(1.49)

𝛼 is the angle between 1 and x;

𝑚 = 𝑐𝑜𝑠(𝛼) 𝑛 = 𝑠𝑖𝑛(𝛼) (1.50)

The inverse transformations may be obtained based on the relations

T −1
1 (+𝛼) = T 1(−𝛼) T −1

2 (+𝛼) = T 2(−𝛼) (1.51)

Finally

𝜎 = D 𝜖 D ≡ D 𝑥𝑦𝑧 = T −1
1 D 123 T 2 (1.52)

Notes:

• Midplane is ill-defined if the material distribution is not symmet-
ric; the geometric midplane (i.e. the one obtained by ignoring the
material distribution) exhibits no relevant properties in general.
Its definition is nevertheless pretty straighforward.

• If the unsimmetric laminate is composed by isotropic layers, a
reference plane may be obtained for which the B membrane-to-
bending coupling matrix vanishes; a similar condition may not
be verified in the presence of orthotropic layers.

• Thermally induced distortion is not self-compensated in an un-
symmetric laminate even if the temperature is held constant
through the thickness.
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