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Damping of materials and members in structures 

F Orban  

Department of Mechanical Design. Pollack Mihaly Faculty of Engineering 
University of Pécs, Pécs, Hungary 

E-mail: orb@witch.pmmf.hu 

Abstract. The state of a structure subject to oscillatory deformation can be described by the 
combination of kinetic and potential energy. In the case of real structures there is also an 
energy dissipative element as some of the energy is lost per deformation cycle. The energy 
dissipation is caused by material damping which basically depends on three factors: amplitude 
of stress, number of cycles and geometry. In the case of non-homogeneous stress distribution 
the geometry of the structure influences the vibration damping. In this paper the influence of 
the geometry will be investigated with special regard to the cross-section. The examinations 
can be executed experimentally, theoretically and by the help of computer programs using 
FEM. In most cases the main goal is to increase the damping of the structure. 

1.  Measures of damping 
Damping of structures is a very complex phenomenon, which refers to two basic reasons a) material 
damping b) friction damping at the connections. When a structure is subject to oscillatory 
deformations the state of the structure can be described by the combination of kinetic and potential 
energy. In the case of real structures some of this energy is lost per deformation cycles and this is 
called material damping. 

Damping is the conversion of mechanical energy of a vibrating structure into thermal energy. If we 
want to quantify the level of damping in a structure the absorbed energy per cycle must be determined. 
By plotting the force versus displacement for a given cycle of motion a hysteresis curve is generated 
(figure 1). 

At linear damping the hysteresis loop is an ellipses (figure 1a). In general metals have linear 
damping in the case when the stress amplitude less than the fatigue limit. At nonlinear damping the 
hysteresis loop is peaked when damping is a result of friction (figure 1b) One possibility to quantify 
the level of damping is to determine the area captured within the hysteresis loop 

 ∫ ⋅= dyFD , (1) 

then the specific damping coefficient is: 

 
U
D

=ψ , (2) 

where U is the stored energy during loading. 
For an unforced damped single degree of freedom (SDOF) system the general equation of motion 
becomes: 
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where m is the mass, k is viscous damping constant and c is the spring constant. 
 

           

Figure 1. Hysteresis loop a) linear damping b) non linear damping. 
 
In the under-damped case when β < α 
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The solution is given by.  

 ( ) ( )0sine εγβ +⋅⋅= − tAty t , (6) 

where  
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The log decrement of transient response δ at linear damping is irrespective of time. There is a 
simple interrelationship between the specific damping coefficient ψ and the log decrement of transient 
response δ. It is possible to express the variable ψ  as 

 ∫ =−=
+

+

Ti

i

U

U Ti
i

U
U

U
dU lnΨ . (10) 

The potential energy for a spring is  

 
c
yU
2

2
= , (11) 
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Figure 2. Transient response of a classically under-damped system. 
 
The level of damping can be subjectively determined by noting the sharpness of resonant peak at f1 

(figure 3). For a quantitative measure of damping the Half-Power Bandwidth Method can be 
employed. 

 

 

Figure 3. Compliance transfer function for a SDOF system.  
 

The damping of the structure η can be determined from the ratio ∆f to f1. The resonant peak  
value is Amax and in this case the loss factor can be expressed as  

 
1f
f∆η = . (13) 

2.  Material damping 
Material damping depends on many factors. The most important of these factors are: type of materials, 
stress amplitude, internal forces, the number of cycles, sizes of geometry, the quality of surfaces and 
temperature. The factors were examined in Lazan book [1]. Damping depends mainly on the stress 
amplitude as 

 n
aJD σ⋅= , (14) 
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where J and n are constants. 
The value of n can be between 2 and 4 but generally n = 2.3 is used. Damping increases with the 

number of cycles and finally a fatigue collapse happens. The values of J are very different for the 
same material according different authors. 

According to [2] 810326.2 −⋅=J  for low carbon steel and therefore 

 3.2810321.2 σ⋅⋅= −D . (15) 

At the uniaxial stressed state the stored energy can be calculated: 

 
E

U
⋅

=
2

2σ
, (16) 

 3.0310769.9 σψ ⋅⋅== −
U
D

. (17) 

According to Equation (17) the values computed for ψ  are summarised in table 1. 
 

Table 1. Specific damping coefficient values refers to σMAX. 
 

σ  N/mm2 20 40 60 80 100 120 140 

ψ % 2.4 2.9 3.3 3.7 3.9 4.1 4.3 

 

The relationship between measures of damping can be expressed: 

 ξ
π
δ

π
ψη 2
2

=== . (18) 

The values of the viscous damping ratio ξ is listed in table 2 according to [3]. 
 

Table 2. Dynamic properties of materials under standard conditions. 
 

Representative Damping Ratios 
System Viscous Damping Ratio ξ 

Metals (in elastic range) < 0.01 

Continuous Metal Structures 0.02 to 0.04 

Metal Structure with Joints 0.03 to 0.07 

Aluminium / Steel Transmission Lines ≈ 0.0004 

Small Diameter Piping Systems 0.01 to 0.02 

Large Diameter Piping Systems 0.02 to 0.03 

Auto Shock Absorbers ≈ 0.30 

Rubber ≈ 0.05 

Large Buildings during Earthquakes 0.01 to 0.05 
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3.   Material damping in the structure 
If the stress distribution is not homogeneous, the geometry of the structure influences the damping 
properties. The damping, which belongs to the maximum stress amplitude is  

 amam JD σ⋅= . (19) 

The structural damping can be calculated as  

 hkams VDD αα ⋅⋅⋅= , (20) 

where V is the volume of the structure, αk is the cross section factor, αh is the length factor. 
The cross section factor for a rectangular cross section (figure 4a) is 

 ∫
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=⋅⋅⋅
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=
=

2/

0max0 1
121 b

y

n
nk n

dyya
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α , (21) 

where A0 = a⋅b. 
 

       

Figure 4. a) rectangular, b) I-section. 
 
In the case of an I-section the cross section factor is: 
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It can be seen that the cross-section factor for an I-section is twice as big as for the rectangular section. 
The length factor is calculated as 

 ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

l n

am

ax
h dx

l 0

1
σ
σ

α . (23) 

A cantilever beam with concentrated load is plotted in figure 5. If the load is concentrated on the 
cantilever beam then the length factor is 
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l

l n

hα . (24) 
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Figure 5. Maximum stress distribution at cantilever beam. 
 

A cantilever beam with distributed load can be seen in figure 6. 
 

 
 

Figure 6. Maximum stress distribution at cantilever beam. 
 

If the load is distributed load the length factor is 
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A simply supported beam with concentrated load is plotted in figure 7.  
 

 

Figure 7. Maximum stress distribution at simply supported beam. 
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If the load is concentrated the length factor for a simple beam can be determined as  

 ∫
+

=⎟
⎠
⎞

⎜
⎝
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2/

0 1
1221 l n

h n
dx

l
x

l
α . (26) 

Simply supported beam with concentrated load is plotted in figure 8. 
 

 

Figure 8. Maximum stress distribution at simply supported beam. 
 
In this case the length factor can be determined as 
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4.  Damping analysis with FEM 
The effect of the geometry on the damping will be analyzed by finite element method (FEM) in this 
section. The GEOSTAR program controls the complete operations of the COSMOSM package and all 
modules are accessed from there.  

The FREQUENCY/BUCKLING option of the program calculates the frequencies without damping 
The POST DYNAMIC analysis (ASTAR) is used to examine the damping and for this it is necessary 
to define the damping ratio ξ. Load excitations may be applied as concentrated loads at specified 
nodes or as distributed pressure applied to specified element faces. The response of the structure at 
certain nodes may be calculated for displacement. 

The log decrement of a transient response is calculated with the help of the displacement time 
curve. 

 
ki

i
A
A

k +
= ln  1δ , (28) 

 T⋅= βδ , (29) 

 12 f
T

⋅== πξδβ . (30)  

The calculated values β and T are suitable for measuring damping. The force-time diagram shown in 
figure 9 will applied as an excitation. The examined cross-sections can be seen in figure 10.  

Six models were examined according to table 3. 
In the examined cases the cross-section area were the same and the maximum stresses were the 

same for a given beam, in the case of the cantilever beam 75 MPa and for the simply supported beam 
20 MPa. 

5th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS 2010) IOP Publishing
Journal of Physics: Conference Series 268 (2011) 012022 doi:10.1088/1742-6596/268/1/012022

7



 
 
 
 
 
 

 

Figure 9. Force-time diagram. 
 

 

Figure 10. Dimensions of the cross-section. 

Table 3. The investigated models 
 

Model Type of beam Loading Cross-section Max stress 

1. cantilever 
Force end of the 

beam  75 MPa 

2. cantilever 
Force 

end of the beam I 75 MPa 

3. cantilever distributed load  75 MPa 

4. simply supported distributed load  20 MPa 

5. simply supported distributed load I 20 MPa 

6. simply supported 
Force 

end of the beam I 20 MPa 

 
Computation of the damping is illustrated in figure 11, where the beam is fixed and the cross-

section is rectangular. 
The damping results for a fixed beam with an I-section can be seen in figure 12. 
The results are listed in table 4. 
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Figure 11. Damped vibration for a fixed beam with rectangular cross-section. 
 

 

Figure 12. Damped vibration for a fixed beam with an I-section. 
 

Table 4. Calculated results for β eigenvalue frequency. 
 

Model β f1 [Hz ] 
1. 2.08 16.06 

2. 4.05 60.2 

3. 1.77 16.06 

4. 5.78 45.3 

5. 20.67 170 

6. 17.36 170 
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The cross section factor αk for I section (figure 4b) is twice as high as for the rectangular section  
(figure 4a). According to the FEM calculations the results are similar. The effects of the load 
distribution are smaller. 

5.  Measuring the damping in a laboratory 
Different methods exist to measure the characteristics of damping. In one method the starting 
displacement is applied and then the system is left free to move (figure 13). In this case a damped 
vibration can be observed. To determine the changing of amplitudes the log decrement δ can be 
calculated, however the changing of amplitudes and strain changing near the fixed point is the same. 
Strain-gauge was used to measure the strains. Figure 14 illustrates the acceleration of beam end and 
strain changing. From the measured values the value of β can be calculated. The first 10 amplitudes 
according to measurements are listed in table 5. 

 

 

Figure 13. Arrangement of measurement. 

Table 5. Measurement results. 

 
Strain 
(µ/m) 

Time 
(s) 

Acceleration 
m s-2 

355.68 0.44 -.0.72 

307.44 0.54 -0.1 

269.04 0.64 -0.089 

220.08 0.74 -0.074 

268.8 0.85 -0.086 

232.08 0.95 -0.075 

240.96 1.07 -0.075 

250.56 1.17 -0.078 

247.92 127 -0.078 

233.76 1.37 -0.074 

 

5th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS 2010) IOP Publishing
Journal of Physics: Conference Series 268 (2011) 012022 doi:10.1088/1742-6596/268/1/012022

10



 
 
 
 
 
 

 
 

 

Figure 14.  Acceleration of the beam end and strains changing near the fixed point  

 
The model of the experiment can be seen in figure 15. The parameters for the model are l =550 mm, 
a= 10 mm, mbeam = 0.434 kg, m = 0.5 kg. 

 
IE
lcE

3
MP,101.2

3
5 =⋅= , (31) 

 
cmred ⋅

=
1α . (32) 

The eigenvalue frequency is  

 sTf  094.0Hz, 55.10
2

===
π
α

, (33) 

 04669.0
76.233
86.355ln

9
1ln1

10

1 ===
A
A

k
δ  (34) 

and the results of the measurements: 

 sec103.0
9

44.037.1
=

−
=T , (35) 

 Hz708.91
==

T
f . (36) 

5th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS 2010) IOP Publishing
Journal of Physics: Conference Series 268 (2011) 012022 doi:10.1088/1742-6596/268/1/012022

11



 
 
 
 
 
 

The calculated and measured values are very close to each other. In this case the damping ratio 
becomes: 

 007.0=
⋅

=
α

δξ f
. (37) 

 

 

Figure 15. The model of the experiment. 

6.  Calculating structural damping 
Let us determine the structural damping for the model shown in figure16. 
 

 

Figure 16. Dimensions of the cantilever beam. 
 

 2N/mm75
333.1

100
===

W
MMAX

MAXσ .  (38) 

The maximum displacement at the end of the beam is: 

 mm5.12
101.210333.13

1000100
3 54

33
=

⋅⋅⋅⋅

⋅
=

⋅
=

IE
lFyMAX . (39) 

The damping ratio according to the measurements is ξ =0.007. The loss factor is η = 0.014, the log 
decrement is δ = 0.044 and the absorbed energy is 

 mm N625
2
1

=⋅== MAXyFWU .  (40) 

The structural damping result is 

 mm N552 =⋅=⋅= UUDs δψ . (41) 

The damping of the structure can be increased by using sandwich beams. 
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7.  Sandwich beams 
Comparing the damping properties of this model the dimensions of this beam are selected according to 
figure 17. 

 

 

Figure 17. Sandwich beam. 
 
Calculation of the maximum stress data is shown in figure 18. 

 

 
 

 
 

 

Figure 18. Stress distribution of the sandwich beam. 
 
To calculate the normal stresses the following expressions are applied: 
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 N/mm4.7925.7475.249.128 =−+=MAXσ .  (43) 

The maximum displacement at the end of beam is 

mm 52.19=MAXy . 

The loss factor can be calculated using the formula for sandwich beams developed by Ungar [4] (also 
in Farkas [5]) 

 
( ) ( )( ) 22

2

2
1121 XYY

XY
⋅+++++

⋅
=

η
ηη , (44) 

where η2 is the loss factor of the rubber, X is the shear parameter and Y is the stiffness parameter of the 
laminates. 
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For steel MPa 101.2 5
21 ⋅== EE , for rubber Gd = 4.5 MPa and η2 = 1.8, thus the loss factor of a 

sandwich beam is η= 0.0738. The calculated absorbed energy is 

 mm N8.536
2
1

=⋅== MAXyFWU , (48) 

 4637.02 =⋅= ηπψ . (49) 

The structural damping of a sandwich beam is: 
 mm N9.248=⋅= UDs ψ . (50) 
 
The dissipative energy is more than four times higher then it is in the steel beam case, which has 
similar dimensions. 

8.  Other structures 
Damping of different structures can be investigated similarly to the beams, however it is impossible to 
determine the damping of a structure theoretically. A possible way to compare different structures and 
determine which structure has better damping ability is to determine the value of β or T.  

Figure 19 shows the first vibration mode shape in the case of the square plate stiffened by flat ribs. 
The cover plate is simply supported around the contour. 
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Figure 19. The first vibration mode shape at stiffened plates. 
 

The calculation has been evaluated by FEM. The first natural frequency is f1 = 49.27 Hz and the 
time of period is T1 = 0.02 sec. Dimensions of the stiffened plates are: cover plate is 1410x1410x2 
mm; flat ribs are 1410x90x3 mm. To examine a flat plate the dimensions are 1410x1410x2.5 mm, the 
first natural frequency is f1 = 6.17 Hz and the time of period is T1 = 0.16 sec. The examined two 
structures have the same volume. The stiffened plate has better damping ability according expression 
(30). 
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