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This review article(Part 1l) is a sequel to an earlier orfPart |) that dealt with means of re-

moval and interpretation of stress singularities in elasticity, as well as their asymptotic and
numerical analysis. It reviews contributions to the literature that have actually effected
asymptotic identifications of possible stress singularities for specific configurations. For the
most part, attention is focused on 2D elastostatic configurations with constituent materials be-
ing homogeneous and isotropic. For such configurations, the following types of stress singu-
larity are identified: power singularities with both real and complex exponents, logarithmic
intensification of power singularities with real exponents, pure logarithmic singularities, and
log-squared singularities. These identifications are reviewed for the in-plane loading of angular
elastic plates comprised of a single material in Section 2, and for such plates comprised of
multiple materials in Section 3. In Section 4, singularity identifications are examined for the
out-of-plane shear of elastic wedges comprised of single and multiple materials, and for the
out-of-plane bending of elastic plates within the context of classical and higher-order theory. A
review of stress singularities identified for other geometries is given in Section 5, axisymmet-
ric and 3D configurations being considered. A limited examination of the stress singularities
identified for other field equations is given as well in Section 5. The paper closes with an
overview of the status of singularity identification within elasticity. This Part Il of the review
has 227 reference$DOI: 10.1115/1.1767846

1 INTRODUCTION sion (Fig. 1). The basic separable fields used to analyze such

This article is a sequel to another one on stress singularit@
in classical elastostatics which considers their removal, intef-
pretation, and analysigSinclair [1]—hereinafter referred to ar
simply as Part)l. Both papers share the recognition that it is
an exercise in futility to perform a stress analysis without o= —Mx—l[cl COgA+1)0+c,sin(N+1)0
appreciating the presence of a singularity when one occurs. n .
2 . S N—3)(cz3cogN—1)0+cysin(N—1)0
In Part I, some methods for determining when a singularity is ( )(¢s cog ) asin( )0)]
present, and po;sibilities for dgaling with it wh.en itis, are g,=\r* !c,cogn+1)6+c,sin(A+1)6
drawn from the literature and discussed. Here, in Part Il, the )
literature is reviewed for contributions that have actually ef- +(A+1)(czcodN—1)6+cysin(A—1)6)]
fected determinations of when singularities may occur. N_1 .
. S . =\r CcySiN(A+1)f8—c,cogN+1)6
The means by which these determinations are made is " [ sint )0=cpc08 )

asymptotic identification. It is therefore necessary, if Part Il +(N—1)(cgSin(A—1)f—c,coqr—1)6)]
is to be fairly self-contained, that we recap key results at- N
tending the asymptotic identification of stress singularities. . _ —f

; : : o U, =——[cicogA+1)A+c,sin(A+1)0
These are available in the literature and a description of their *  2u [er cog ) 2 SiN )

development is given in Part I, Sections 4.1 and 4.2. The .
particular approach considered in some detail there is via the T (A= r)(C3CoqA—1)f+Cysin(A—1)6)]
Airy stress function and separation of variablester Will- A
iams[2]): There are other approaches which can lead to the ug=2—[01 sin(A\+1)f#—c,cogn+1)6
same result¢complex potentials, Mellin transforms ®
To fix ideas, we consider an angular elastic plate in exten- +(A+k)(CczsSin(A—1)f8—c,codN—1)0)]

Transmitted by Editorial Advisory Board member R. C. Benson

gtes are given in William$2] and Part I, Section 4.1. In
terms of cylindrical polar coordinatesand 6, the stresses
r» 04, andt,, and displacements, andu, in these fields

(1.1)
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for n=1,..np—r, and A=1 with

&2+85+85#0 in the stress field attendingl.2)
o=0(cog nInr))+O(sin(yInr)) when D=0

for complex A\=1+i»

Herein, A has taken on the role of an eigenvalue of the
asymptotic problemn, is the order of the matriA, andr
is its rank when\ is an eigenvalue. For a plate made of a
single material,nn=4 at most; for a bimaterial plata,
=8, and so on. The last stress (ih.3) is not singular ag
—0, being bounded under this limit. However, it is unde-
fined asr—0. Hence, to a degree, it shares with singular
% stresses some of the difficulties attending interpretation as
0.
The conditions in(1.3) apply to angular plates in exten-
sion. Adaptation of1.3) to states of antiplane shear follows
In (1.1), u is the shear modulus and equals 3-4» for directly (see Sections 4.1 and 4.2Adaptation of(1.3) to
plane strain and (3 v)/(1+v) for plane stressy being bending is less direct but nonetheless fairly straightforward
Poisson’s ratio. Furtheg; (i=1,...,4) are constants andis (see Sections 4.3 and 4.Adaptation of(1.3) to other con-
the separation-of-variables parameter. This parameter mayfigerations is discussed in Section 5.
complex. Then the real and imaginary parts(dfl) each With inhomogeneous boundary conditiorisrther auxil-
constitute acceptable fields which may have distinct sets igfy fields can participate. These fields follow from a further
constants from one another. It is also possible to have aultferentiation with respect ta; stresses are given in Part |,

iary fields participate in the asymptotic analysis. These fieldg,tign 4.2 By way of example, the, stress component in
can be generated by differentiating with respecttas in - fields. is '

Dempsey and Sinclair3], and are given in Part |, Section
4.2. By way of example, the, stress component in these g,=r*"[(AIn?r+2Inr—X6%) (T, cog\+1)6
fields is

go=r " (L+NInr)(&; cogN+1)6+¢&,sin(A+1)6)

Elastic plate, ®

Fig. 1 Geometry and coordinates for the angular elastic plate

+Tysin(A+1)0)+(N+1)(C3cogn—1)60

R +T,sinA—1)0)+0(Inr)+0(1)] (1.4)
+(2N+1+A(N+1)Inr)(E3cogN—1)6
o o R asr—0. In (1.4), tildes atop constants distinguish them from
+C4siN(A—1)0) —AO(CysiNA+1)0—CocodA+1)0  those of(1.1) or (1.2). All three sorts of field in concert lead
+(N+1)(EsSiNA—1)0— &, codA—1)6))] (1.2) to the foIIowin_g set .of conditions for. theingular str_esses
that are possible with uniform tractions/ linear displace-

In (1.2), the carets atop constants serve to distinguish thgfients appliedFor any stress componeat asr— O0:
from those of(1.1)

Introducing the fields in(1.1) into a set of fourhomoge-
neous boundary conditiortsolding on the two edges of the
angular plate results in a homogeneous system of equations
in the four constants;. Call the coefficient matrix of this
systemA and its deter.mllna.riD. Then, a_lso entertaining the~6§+5§+53¢0 in the stresses attending.4)
possibility of the participation of the fields attendirt.2)
leads to the following set of conditions for thengular
stresses that are possible with homogeneous boundary c8n-
ditions For any stress componeat asr —0:

o=0(ré{ tcognInr))+O(r¢ tsin(zInr)) when D=0

n

o=ord(In?r)+ord(Inr) when D=O,W=O

for n=1,..np—ra with

n
ord(Inr) when D=0,W=o, for n=1,.., np—rp
(1.5)
with ©;=T,=T3=0 in the stresses attendindlL.4)

. "
for complex A=¢&+in(0<é<]) o=ord(Inr) when Dzo,mio, for n=np—ra
(9n
o=0(r* tInr)+0O(r*~1) when D=0,—==0 with &2+&5+¢5+#0 in the stresses attendind..2)

provided throughout1.5), A\=1 andr#r,,, wherer,, is

the rank of the augmented matrix formed by combinig
o=0(r*"1) when D=0 for real A\(0<A<1) (1.3) Wwith the nontrivial forcing vector associated with the inho-
mogeneous boundary conditions. Given such a nontrivial
vector, the singularities ifiL.5) occur irrespective of far-field
boundary conditions. Hence the use of the ord notation in

for n=1, .., no—r, and realA\(0<A<1)

n

o=0(Inr) when D=o,m=0
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(1.5 instead of the large ordeD® notation of (1_3)_1 The Table 1. Homogeneous boundary conditions for in-plane loading

singularity conditions ir{1.5) apply directly to angular plates identifying Boundary Physical
in extension: Adaptation to other configurations is discuss&dman numeral conditions description
in Sections 4 and 5. _ _ | 7y=0, 7,y=0 Stress free
In what follows, we review asymptotic analyses that emk Up=0,u,=0 Clamped
ploy (1.3), (1.5), or their equivalents to identify stress singuy, 3fj8: ;f::(? imsn;;t{%’etry
larities. We begin in Section 2 with angular elastic plateg Uy=0, 7,p=fo, Contact with friction
made of a single material under in-plane loadiigy in ex- ' oy=kU,, 7,=k'u,  Cohesive stress-separation laws

tension. In Section 3, we review the singularities identified
when such plates are made of multiple materials. In Section
4, we consider out-of-plane shear and bending. In Section 5,
we consider a variety of other circumstances: axisymmetMdth
and 3D configurations within classical elasticity, and a lim-

ited review of the effects of other field equations. Finally, in g _ 94, 1 s U

—+ — 2.4
Section 6, we close with some remarks on the general char- aor r de r (2:4)
acter of results, and the overall state of investigations into o o _ .
singularity identification. on R, wherein® is the dilatation whilex continues as the

shear modulus ana continues to equal 34v for plane
strain and (3-v)/(1+ v) for plane stressy being Poisson’s

2 STRESS SINGULARITIES FOR THE IN-PLANE ratio; any one of the admissible setsknfundary conditions

LOADING OF AN ELASTIC PLATE MADE OF A listed in Table 1 on the plate edge a0, together with
SINGLE MATERIAL another such set on the edgedat ¢ or bisector a= ¢/2 as

appropriate, for 8r <o; and theregularity requirementsit
2.1 Formulation and eigenvalue equations the plate vertex,

Here we obtain the eigenvalue equations governing the pos-
sible stress singularities that can occur at the vertex of an

angular elast|c. .plate sgbjected to different homogeneogﬁ%_ In particular, we are interested in the local behavior of
boundary conditions on its edges.

To formally state the class of problems under considetrhe fields complying with the foregoing in the vicinity of the

ation, we continue to employ cylindrical polar coordinates plate vertexO.
and 6 with origin O at the plate vertexFig. 1). In terms of The boundary conditionsf Table 1 merit some discus-

these coordinates, the open angular region of intefess s:on. .Colndltlgn.s ! afnd I applyforvzo for ¢ an(;j are tlhe d
given by classical conditions for a stress-free surface and one clampe

to a rigid attachment. The clamped conditions also admit to
R={(r,0)|0<r<w, 0<<¢} (2.1) interpretation as the homogeneous complement to the condi-

where ¢ is the angle subtended at the vertex of the platg(_)ns.attendlng |n'dentat|o'n by a rigid pungh with no §I|p
ermitted. Such indentation is also sometimes associated

With these geometric preliminaries in place, we can formds P . o, ) )
late our class of problems as follows. with a “rough” or “adhesive” punch in the literature.

In general, we seek the planar stress componentsr,, OWhen_tthe san}el iong_mt(_)ns z_ap;]plk))/ (t)n both plate ?(_Jlgiesé
and 7, and their companion displacements andu,, as t', ). | Its' usetul to 'St')nglt“tsh elvtveir) sytmmtle “t% arf1_ ‘
functions of r and @ throughoutsk, satisfying: thestress anuSYMMENIC response about the plate bisector. In he hirs

equations of equilibriunin the absence of body forces, "’?Stance' I 'S useful because the_ analysis can _be easier by
virtue of leading to a X2 determinant for the eigenvalue

equation instead of ax¥4. In the second instance, it is useful

u,=0(1), u,=0(1), asr—0 (2.5)

do, 1ldry o,—0y

0

a ' r a0 r because it can restrict the number of singular stress states
(2.2) possible in a given global configuration before undertaking

l dog  ITrg 2719 -0 its global analysis. Conditions Il and IV enable one to make

r ado ar r this distinction. For the present plate configuration, they ap-

ply on 8= ¢/2 when used in this rol@.

Conditions Il can also be interpreted as the homogeneous
complement to indentation by a frictionless rigid punch. In
this role, they apply or#=0 or ¢ and are usually adjoined
with the condition that the normal stress not be tensile in the
contact region. That is,

on fR; the stress-displacement relatiorfer a linear elastic
plate which is both homogeneous and isotropic,

A

k—1 r a6
1du, du, uy

or r 060 r 2.3)

== —+
T 50 T Tar

0,<0 (2.6)

1A definition of ord is given in Part I, Section 1.2. The essential difference between ofdl/ith symmetry,u; is an even function off about¢/2, u, on odd: with antisymmetry,
andO is that, with the former, the coefficient of the related singularity cannot be zervice versa. Hence, on drawing ¢2.3), (2.4), the boundary conditions given in Il and
whereas with the latter it can. V.
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on =0 or ¢, for 0<r<«. The indentor shape can lead tadhe problems formulated. This is also something provided by
further constraints outside the contact region to prevent iassociated finite problems. However, this does not mean that
terpenetration. there need be concern as to the dimensional consistency of
Conditions IV can also be interpreted as those for a thihe asymptotic analysis. To see this, observe that the field
stiff reinforcement(Rao [4]). The reinforcement is suffi- equations(2.2), (2.3, and (2.4) are equidimensional im,
ciently relatively stiff to prevent extensioru(=0), but not and thatu, andu, occur “divided” by r. Thusr, u,, andu,
so stiff as to prevent bending because of its thinnags (can be replaced by/L, u,/L, andu,/L, whereL is any
#0). length scale, and leave the equations unchanged. Hence any
Conditions V extend the contact conditions of Ill to perasymptotic solutions obtained can be regarded as being in
mit finite friction via Amonton’s law? Hereinf has the mag- terms ofr/L and thereby made dimensionally consistent.
nitude of the coefficient of friction. For these conditions, in Third, regarding material constants These are con-
addition to seeking to apply the contact constrah6) and Strained to the physically applicable ranges; @<« and
any external displacement constraints, we must try to ens@e v<1/2. However, for plane strain with an incompressible
that the shear stress opposes any slipping. This may be pbgterial @=1/2), we have k=1 and the stress-
sible by selecting the sign df appropriately. displacement relations dR.3) and (2.4) are no longer di-
Conditions VI apply cohesive stress-separation laws. Th{RCtly applicable. Under these circumstances we redglire
k andk’ are the stiffnesses associated with relative trans-0_in (2.4) and modify(2.3) by removing the® terms.
verse and lateral displacements between material on the twd Ourth, regarding theregularity requirements (2.5).
sides of the ray on which the conditions are applied. Whei{1€S€ ensure bounded displacements at the plate vertex and
applied ond=0 in Fig. 1, bothk andk’ are positive: ory boqued forces on rays radiating from the vertex. Such fields
= ¢, negative. In some instances it may be possible to Lefinitely appeal as being more physical than those with un-

one or the other of these stiffnesses to zero. For exarkple,P0unded displacements or forces. This, though, is not the

can be taken as zero when loading is symmetric. In contrd&2son for2.5). If physical appropriateness in itself were to
if k andk’ are let tend to infinity, Conditions Il are recoy-Serve as sufficient justification, then we would want to pro-

ered. In generalk andk’ are of constant magnitude in theh|b|t unbounded stresses as well. We cannot do this. This is

elastic regime and should both be consistent with the elaslgl%cause then t_he formulation .does n_ot "’?dm't a sufﬂuenﬂy
moduli of the surrounding continuum. road class of fields to enable its solution in general: That is,

Conditions VI can also be interpreted as those for a pla%e f.'e.lds S0 admltteq are incomplete. In contra;t, we can
on an elastic foundation. Usually théd is taken as zero prohibit unbounded displacements because the fields so ad-

giving Winkler conditions(Winkler [6]; Oravas[7] has that Imlttedd .arde. C(imdplfete:(r'll'hls IS gxpllcnly S(T.?.W” fpr _Crtok:}dlt;on.s
these conditions were given earlier in Eul8p). » and in |ca4e or the remaining conditions in fable L, In
. i : ._Gregory[11].
In either role, Conditions VI differ from the others in . L
: : R For problems wherein the completeness of elastic fields
Table 1 in that a single boundary condition involves both a. : .
. . ... with bounded displacements holds true, the regularity re-
stress and a displacement. Such mixed boundary conditions . . .
. . . ._guirements of(2.5 are not just a nice option. Rather, they
would seem to be fairly rare in elasticity. One further in- . ; -
are essential if any companion finite problems are to have

stance occurs for the elastic angular plate reinforced by’ a: . . .
unique solutions. To explain further, consider the elementary
beam column—see Nullg¢g].

. . : (Problem of a circular elastic plate of unit radius under all-
All of the foregoing boundary conditions are applie . . .
around uniform pressurp. Absent regularity requirements

along radial rays emanating from the plate vertex. That is, gn . L

; . . : asr—0, two solutions are possible:
straight boundaries. If instead they are applied on curve
boundaries that smoothly make tangents to the straight at the pr
vertex, the same singular eigenvalues can be expected. Come,=0y=—p, U,=— 4—(K— 1) (2.7)
panion eigenfunctions differ, however. See T[Ag]. K

Some further comments on the preceding formulation agg

also appropriate. First, regarding the absenecgiirements at

infinity on K. This renders fields complying with our formu- p p
-2, W=7
2ur

lation nonunique. Since the principal attribute of these fields 9=~ %6~ — |
is the characterization of all possible responses at the plate

vertex, including especially all possible stress singularitiggequiring bounded displacements eliminat2s) and ren-
there, such a lack of uniqueness is to be desired rather tltns the problem well posed by making it have a unique
regulated against. In any configurationfimiite extent locally solution. Analogously, uniqueness for singular stress fields
containing one of the configurations admitted by our formwith bounded displacements in completely formulated prob-
lation, conditions on the other boundaries in the finite georfems for finite regions occurs: The proof of this follows from
etry should make its solution unique.

Second, regardindimensionsThere is no length scale in rom the abstract and introduction in Gregfil], one might think that the original
Williams’ eigenfunctions are complete for the boundary conditions in Willig#isAs
is demonstrated in Section 2.3, this is not so. Further readingldf though, reveals

SAlso termed Coulomb’s law in the literature. See Ch 13, Johii§drior conditions  that it recognizes the need to supplement the fieldd dj with those attendingl.2)
under which there is some physical support for the use of this law. for completeness.

(2.8)
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Table 2. Eigenvalue equations for symmetric response aboll=/2  contact,(2.11) and (2.15 in Tables 2 and 3, are given in

Boundary conditions  Eigenvalue Equation Kalandiia[19]. Equations for these conditions which are ex-

on 6=0,¢ equation number actly the same ag.11) and(2.15 are provided in Seweryn

[ or VI-l or VI X Sing=—sinne 2.9 and Molski[20]. Two further frictionless contact equations

-1 \ sing=xsin\¢ (2.10 for such conditions in combination with free and with

s Cfo[s(l¢—::)ossir);()]f¢+(l+K+2)\)sin</>] g%g clamped conditions can be ob.taine.d by setfingd in (2.18
=(1+ «)(COSAp—COS ) and (2.19 of Table 4, respectively: These two are given in

Kalandiia[19]. The equation for contact with friction acting
Table 3. Eigenvalue equations for antisymmetric response abou® with .Itself .Symm.emcaHY’ (2.12, would nOt. appear to .be

= i2 readily available in the literature; the equation when this ac-
tion is antisymmetric(2.16), is essentially the same as the

gﬁ“gfg% conditions Eaguzr:i‘g’;:”e Eﬂ#fg’;” corresponding equation in DempsE31]. The contact with
: _ : friction-free equation of(2.18 in Table 4 can be obtained
| or Vi or Vi »Sin gzﬂfy‘sﬁwﬁ gﬁg from Gdoutos and Theocarig2]. It follows on setting “G”
-1 COS ¢h=—COSA (21 in [22] to infinity to reflect a rigid punch, and ¢’ = —f
V-V f[(1—x)sinAg—(1+xk+2N\)sin¢]  (2.16 because the friction conditions therein hold on a negative

= (1+ k)(coshe+cosd) 6-edge. The contact with friction-clamped equation(2fL9

in Table 4 is essentially given in Dempsgg4]. The equiva-
Table 4. Eigenvalue equations for mixed problems lence of stress-free conditions with those for cohesive stress-
separation laws as far as the foregoing eigenvalue equations

58#;322’5 E("%Zrt'i\g?:ue Egriit'e?n are concerned is basically argued in Sinc[ai8].

on 6=0,¢ When Conditions IV are interpreted as being for a thin

Cor Vil AL ST NGNS b= (L) 217 stiff reinforcement, eigenvalue equations for these conditions

I or VIV 2 f[(1— k) SIE A p—N(1+x+2\)sir? ] (2.18 with others and a plate of vertex anghé& are given in Table
=(1+ k)(sin 2v¢-+\ sin 24) _ 4. When Conditions IV act in this role on both edges of a

1-v 2 f{k(1— k)Sir? N\p+\(1+ k+2\)sir? ¢] (2.19

plate of vertex anglep, the eigenvalue equation can be

(1 in2x¢—\si
(1+ k) (« Sin 22—\ sin 2¢9) formed as a product d2.11) and(2.15).°

2.2 Power singularities with homogeneous boundary
the boundedness of attendant strain energies and the us@aditions
Kirchhoff argument(see Knowles and PucikL.2]). For the homogeneous boundary conditions of Table 1, the
On occasion, further support for the bounded displacassociated eigenvalue equations of Tables 2—4 can give rise
ment conditions derives from solving a singular problem ag stresses with power singularities when their eigenvalues
the limit of a sequence of nonsingular problems, the anare less than one—sé@.1). To be in accordance with the
logue of the approach adopted in concentrated load problersgularity requirement€.5), these eigenvalues must not be
and for generalized functions in general in LighthilB]. An  less than zero. An eigenvalue equal to zero corresponds to a
example is the plate under uniform remote tension with afyid body displacement if1.1) and therefore is not of in-
elliptical hole. As the height of the hole parallel to the tenterest because associated stresses are not singular: The same
sion goes to zero, the nonsingular stress fields can be shawdfue leads to unbounded displacements for the fields asso-
to recover the inverse-square-root stress singularity ofcated with (1.2) and therefore is not admissible. Thus the
stress-free mathematically-sharp cra@kolossoff [14,15 eigenvalue range fquower singularitiess
and Inglis[16]). This singularity has bounded displacements. 0<n<1 (2.20)
The same is true of other singular configurations realized in '
this way: see, for example, Neubdr7]. We review eigenvalues within this range for a variety of
The analysis of the class of asymptotic problems formgenfigurations in this section.
lated proceeds routinely on using the approach outlined in The solution of the eigenvalue equations within the sin-
the Introduction here, and described in some detail in Parfgylar range typically cannot be done completely analytically.
Section 4.1. This yields the eigenvalue equations set outAccordingly it usually proceeds numerically except for a few
Tables 2, 3, and 4 for symmetric, antisymmetric, and mixesklect instances. The results so found are compared with
configurations, respectively. These eigenvalue equations #rese in the literature. For all sources given in what follows,
typically available in the literature as described next: Heréhey are consistent. Thus their calculation here may be
they are independently derived largely as a check. viewed as independently confirming values already deter-
The free-free equation2.9) and(2.13 in Tables 2 and 3, mined in the cited sources.
the clamped-clamped equatiof®&s10 and(2.14) in Tables 2 In presenting results we introduce thagularity expo-
and 3, and the clamped-free equati@l7) in Table 4 all nenty defined by
effectively appear in William§2] and Kitover[18].° Equiva-

lent equations to those for frictionless contact-frictionleSsnat is, by rearranging2.19, (2.15 so that they have expressions on one side of
the=, zero on the other, then setting the product of these expressirEhe so-

_ obtained equation is given in 'Rsle[24]. This reference also gives nine further eigen-

5The eigenvalue equations in KitovgL8] are correct for plane strain, but appear tovalue equations. These equations are contained in, and are consistent with, those in

have typographical errors for plane stress. Tables 2—-4.
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Vertex angle, ¢

d

Fig. 2 Singularity exponents for varying vertex anglasfree-free and clamped-clampéiom (2.9), (2.13 and(2.10, (2.14), respec-
tively), b) frictionless contact-frictionless contadtom (2.11), (2.15), ¢) contact with friction-contact with frictiorifrom (2.12, (2.16)),
d) clamped-fregfrom (2.17)), e) contact-fregfrom (2.18), f) contact-clampedfrom (2.19)

lar for v positive, and the largef the more singular. The
limits on the nature of this power singularity are, fr¢gh20
Then(1.1) has stresses which behave in accordance with and (2.22),

y=1—\ (2.21)

o=0(r7) asr—0 (2.22) 0<y<1 (2.23)

whereo is any stress component. That is, stresses are sinfjuthe event thak is complex, we have stress singularities as
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Fig. 2 Continued

in the first of (1.3) with Re (1-\)=1—-¢=v, ImA=7, and free plate of vertex angleé=180°. Thus no singularities.
(2.23 still applying toy. Results fory satisfying(2.23 are For a 90° reentrant corner under symmetric loading, cohe-
presented in Fig. &-f for varying vertex angles. sive laws should be inserted ahead of the corner on the ray
Included in Fig. 2 are the singularity exponents for thebisecting the plate to achieve bounded stiffnesses. This effec-
free-free plate, for both symmetric loading frof2.9), and tively gives a free-free plate witlh=135°. Thus no singu-
antisymmetric from(2.13. The symmetric curve is given in |arities. The same sort of argument applies for antisymmetric

Fig. 1, Williams[2]. It dominates singular character if load4oading (see Sinclair, Khatod, and Rummg7] for further
ing is symmetric or mixed because the antisymmetric curéplanatioi.

realizes weaker singularities with stress-free boundary con-a|sg in Fig. 2a are the singularity exponents for the
ditions: Of course, it cannot dominate if loading is pre'Elamped-clampquIate, for both symmetric loading from
antisymmetric. The antisymmetric curve may be found iy 10, and antisymmetric froni2.14). These are for a rep-
Fig. 9, Reel[25] or Fig. 3, Seweryn and Molski20]. resentative value ok=2, corresponding to Poisson’s ratio

For ¢=360° with free-free conditions, we have the tradi;,— 14 for plane strain, ow=1/3 for plane stress. A very

tional, mathematically-sharp, stress-free crack with it§pijar symmetric curve is given in Fig. 1, Williani&], for
inverse-square-root singularity for both symmetric and anti—_2 1. Some eigenval for antisvmmetric r nse for
symmetric loading P,, Fig. 23). For $=270°, we have a <~ ¥ ome €eigenvalues Tor antisymmetric response 1o

stress-free 90° reentrant corner with two possible singuIaW-e Samec are given in Williams{28] from Ricci ,[29]', The
ties, the stronger being for symmetric loadin@,(and P,, actual symmetric curve fok=2 may be found in Fig. &
Fig. 2a). For ¢<257.5°, no further singularities are found>€Weryn and Molski20J, while the companion antisymmet-
for antisymmetric loading. Fop=180°, we have no singu- "C CUrve is given in Fig. 8, ibid. In Williams 2], the sin-
larity for symmetric loading. This is because, for this stresgularity associated with symmetric loading under clamped-
free half-plane geometry, there is no discontinuity in boun@/@mped conditions is claimed to be dominant. This is so if
ary directions or conditions. Forp<180°, no further loading is purely symmetric: Otherwise, for these boundary
singularities are found for symmetric loading. Further, thef@@nditions, the singularity associated with antisymmetric
are no complex eigenvalues with real parts in the singularigading is dominant.
range for the free-free plate; this is shown in Karp and Karal For clamped-clamped conditions, both symmetric and an-
[26]. tisymmetric curves ath=360° have an inverse-square-root
Given the equivalence afohesive stress-separation lawssingularity. For¢=180°, both do not have a singularity for
with stress-free conditions, the free-free curves of Fig. Zimilar reasons for this being so for free-free symmetric re-
also apply for these laws. Hence, the removal of some s@ponse. Fop<180°, no singularities are found for either.
gularities(noted in Part I, Section 212an be confirmed. For No singularities associated with complex eigenvalues are
a cracked configuration, putting cohesive laws ahead off@und for either.
sharp crack as well as in back of it effectively gives a free- Some indication of the influence of Poisson’s ratio on
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singularities with clamped-clamped conditions is containetents is similar to that of Fig.2for f=0, including the
in Fig. 2a. This is because free-free with symmetry has theounding of singularities for antisymmetric loading by those
same eigenvalue equation as clamped-clamped with antisyfer- symmetric for the same reasons. That is, here too any
metry andx=1—see(2.9) and (2.14. Similarly free-free antisymmetric response must occur in concert with sufficient
with antisymmetry is the same as clamped-clamped wilymmetric participation if compliance witf2.6) is to be
symmetry andk=1—see(2.13 and (2.10. Thus, ask de- achieved. , _
creases corresponding to Poisson's ratio increasing, the sin-| "€ré are some differences, however. For symmetric con-
gularity for antisymmetric clamped-clamped conditions gefigurations andf=1/2, there are two real branches which
stronger, while that for symmetric clamped-clamped gef8€rge together ap=252.5° into complex roots with a com-
weaker. The trends thus evident in Fig &re confirmed by Mon real parishown in Fig. 2) and equal imaginary parts
singularity exponents for clamped-clamped conditions«for ©f OPposite sign(not shown. Checking the companion
~12 and 3 in Seweryn and MolskR0]. eigenfunction for these real eigenvalues reveals that the_ up-
In Fig. 20, singularity exponents are plotted for thic- per branch(shown does have the contact shear opposing

tionless contact-frictionless contaglate, for both symmetric motlpn; the lower brap ch does ndtence not shown As .
loading from (211, and antisymmetric froni2.15. These previously, though, this removal here does not necessarily

two eigenvalue equations are the simplest of all and admit gan that f_|elds associated v_\nth Fhe lower branch could not
analytical solution. Thus for symmetric configurations, be present in a problem. Again, singular stresses cease to be
possible for symmetric configurations whein=180°.

For symmetric loading, increasing the coefficient of fric-
tion f tends to reduce singularity exponents, as can be seen
by comparing Fig.  with Fig. 2b. For antisymmetric load-
ing, results are mixed in this regard. For both types of load-
™ 37 (3 ing, increasing Poisson’s ratio typically increases singularity

Y=g o ?(7< ¢$27T) (2.25)  exponents.

) o ) ) ) In Fig. 2d, singularity exponents for thelamped-free
Expressions yielding these valuesyére given in equations plate are plotted. These exponents are f@t7). The real
(36) and(41), Seweryn and MolsKi20]. These are the values 55 of all singular branches are shown for the representa-

plotted in Fig. &. tive value k=2; just the dominant singularity fox=1. A
The ranges o in (2.24) and (2.2 bear comment. FOr ginijar curve to the upper branch far=2 is given in Fig. 1,

symmetric loading, the absence of singular stresses wher&}l. . o1
=180° is to be expected for the reasons put forward earli _|II|ams [2], for x=235. The real parts of all branch_es for
k=2, as well as the most singular branch icr 1, are given

Given no singularities are found fef<<180°, the range in- : ) .
cludes all singularities for this loading. For antisymmetrit Figs. 1A and 14, Seweryn and Molski[20]

loading, ¢=270° terminates singular response on the Iowé?SpeCt'Vflﬁ . .
branch in a similar manner to the free-free antisymmetric F0" #=360° and clamped-free conditions, there are four

case of Fig. 4. For the upper branch, the same limit gn _pos_sible s_ingu_larities fok=2: two for each complex root
holds if antisymmetric singularities are not to be strongdpdicated in Fig. . For #=180° andx=2, we have an
than those associated with symmetric loading. The reas@¢iliatory singularity as for an adhering, rigid, flat punch
for limiting singularity exponents in this way are as follows(P4, Fig. 2). Itis the presence of theseo roots as com-
For contact on both plate edges and fields that are pur@y$X conjugates that precludes the removal of singular
antisymmetric o, must be positive on one edge, negative opiresses in conforming contact problems when stick-free con-
the other. Where it is positive would be in violation of ouflitions are assumed. Fgr=90° we have the singularities of
contact stress constraif#.6). This means that antisymmetricPs (v=1/2, k=1) andPs (v=3/8, x=3/2) which, for ex-
loading needs to act in conjunction with sufficient symmetri@mple, apply to the edge of an adhering rubber tire and at the
loading if compliance with(2.6) is to be achieved. Antisym- outer surface of an epoxy-steel joint. No singularities are
metric singularity exponents cannot exceed symmetric if thigund for ¢<60° when k=2, ¢<45° whenx=1. This
is to happen. Hence the limit i2.25. Observe, though, that trend of a larger range of vertex angles with stress singulari-
in the analysis of a given global problem, such compliand®s with larger values of Poisson’s ratismaller x) is con-
with (2.6) whence(2.25 does not have to be the case: Ifirmed by results for other in Seweryn and Molskj20].
needs to be checked for, and means sought to remedy thdn Fig. 2e, singularity exponents for theontact-freeplate
situation if it does not occur. are plotted. These exponents are fr@l8. The real parts

In Fig. 2, singularity exponents for theontact with of all singular branches are shown for the chosen represen-
friction-contact with friction plate are plotted. These aretative case of contact with frictionf &1/2 andx=2); just
from (2.12 for symmetric configuration$2.16) for antisym- the dominant singularity is shown for the frictionless case.
metric. Values of friction coefficient=1/2 and ofk=2 are The exponents for contact with friction would not appear to
taken as representative. The general character of the expe-available in the open literature: The values shown in Fig.

2
y=2- ?(77< d<21r) (2.24)

while for antisymmetric,

"This is also the reason for excluding the further antisymmetric singularity exponéfithe imaginary parts of singular eigenvalues o+ 2 and the other singular branches
y=2—ml p(m2< p<). for k=1 are also provided in Seweryn and Mol$R0D].
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2e are confirmed in Klingbei[30]. The exponents for fric- ~ While not strictly a power singularity, we close this sec-

tionless contact are given in Figa2Seweryn and Molski tion by noting instances of undefined oscillatory stresses as

[20].° in the last of(1.3). These occur for mixed problems. For the
There need be no restrictions on the branches includedc'qgmped_free plate, their presence is indicated in Fig, 11

Fig. 2 as a result of contact constraints. This is because t88weryn and Molsk{20], for x=3. Solving (2.17) for A

sign of the participation coefficient can always be such thatj +j; and k=3 then gives oscillatory stresses when

the contact stress conditiof2.6) is met, and a rigid body —=100.4°, 274.0° withy=0.13, 0.02, respectively. Similarly

displacement can always be added so as to ensure the ff#- the other mixed problems—contact-free and contact-

tional shear opposes slip. That is, the local fields associa@gdmped—solving(2.18 and (2.19 for A=1+i7 leads to
with the singularity exponents of Figezan potentially par- oscillatory stresses.

ticipate in a global problem and all auxiliary contact condi-
tions be met. Whether this actually happens for the particular
global configuration of interest needs to be checked. 2.3 Log singularities with homogeneous boundary con-

For ¢=360° and contact with friction-free conditionsditions
there are three singular stress fields possible. This is also theaddition to the singularities revealed for the real and com-
case for frictionless contact, although this is not apparentjitex y of Fig. 2, there is the possibility of logarithmic con-
Fig. 2e because only the most singular branch is includetiibutions to stress singularities. These may be produced un-
For ¢=180°, the frictionless contact case gives the singder the homogeneous boundary conditions of Table 1. Then
larity as for a tire at the edge of a pothole on an icy pavemethiey can take the form dbgarithmic intensificatiorof stress
(P, Fig. 2). For contact with friction andp=180°, the singularities. That is, stresses which behave as
singularity that results is as for an adhering tire but with _ _
some slip permitted. Under these conditions therenisreal ¢~ (" 7NN +0O(r"?) as r—0 (2.26)
singularity (at P, Fig. 28) compared to the two for an ad-for y>0. For homogeneous boundary conditions and stresses
hering tire with no slip. This enables the stress singularity tf the form of (2.26), at the outset these stem from real
be removed for conforming contact when there is contagigenvalues which are repeated roots of the eigenvalue equa-
with friction-free conditions. No singularities are found fottion. This is a necessary but not sufficient condition for these
$<90° whenf=0, ¢$<116.6° whenf=1/2. This is the stressegsee(1.3)).
trend in general, namely, asbecomes more positive, the Repeated roots can be expected to occur where there is a
range of vertex angles with stress singularities decreases. temsition from two real roots to roots which are complex
the other hand, varying Poisson’s ratio while holdingon- conjugates. To see this, supposds an eigenvalue oD
stant leaves the range of singular vertex angles unchanged0 for vertex anglep. Now perturbe by 8¢ while continu-

In Fig. &, singularity exponents for theontact-clamped ing to insistD =0, and leto\ denote the accompanying per-
plate are plotted. These exponents are fi@d19. All sin- turbation in\. From Taylor’s theorem in two variables, we
gular branches are shown for the representative case of chave
tact with friction (f=1/2 andx=2); just the dominant sin-

2 2 2
gularity is shown for the representative frictionless cage (- Q S\ + @ S+ Q ﬁ + ﬂ NS¢

=2). The exponents for contact with friction would not ap- IN d¢ N 2 NI

pear to be available in the open literature: The values shown 7D 52

in Fig. 2f are confirmed in SmallwoofB2]. The exponents + +...as 6¢p—0 (2.27)

—
for frictionless contact are given in FigabSeweryn and I¢c 2

Molski [20]. For the same reasons as for Fig, there need \herein it is understood that all derivatives are evaluated at
be no restrictions on the branches included in Figa2 a ) and ¢. If \ is a repeated root, thesD/dN=0 for X, ¢.
result of contact constraints. Thus, provideddD/d¢#0, 3°D/N?#0 at\ and ¢,

For ¢#=360° and contact with friction-clamped condi- 5
tions, there are three singular stress fields possible. The same, _ \/_ JdD /"D
is true for frictionless contact-clamped conditions, though o= 256 d 19)\2+O(5¢) as 0¢—0
this is not shown in Fig. 2 For ¢=180° there is but one (2.28)
singularity for a given coefficient of friction. This enablesAS 5¢ changes sign i112.28), we have the anticipated tran-
singularities to be removed when transitioning from stick tgition from two real roots t(’) roots that are complex conju-
slip in contact problems. No singularities are found &br gates
.<90° whenf =0, $<63.4° whenf =1/2. This is th_g trend This is what occurs aR; in Fig. 2d. Further checking of
in general here, namely, & becomes more positive, the h

. . e rank conditions in the second @f 3) shows that they are
range of singular vertex angles increases. Conversely,

i ina Poi ) ) d h tisfied for this repeated root. Fgi>0, these rank condi-
cpnstant , Increasing Poisson's ratio reduces the range ns are necessary for the possibility of logarithmic intensi-
singular vertex angles.

fication of power singularities. In Dempsg33], such checks
are carried out for the dominant singularity in the clamped-
9England[31], Fig. 5, gives values consistent with the exponents given heré=f@r free plate and consistently show the possibility of Iogarith-

and 0< ¢=<180°, 270% ¢=<2360°; the values ibid for 1862 ¢»<270° do not apply to T . . - . X
the frictionless contact-free plate. mic intensification of singularities wherever there is a tran-




394 Sinclair: Stress singularities in classical elasticity—II Appl Mech Rev vol 57, no 5, September 2004

Table 5. Configurations with logarithmic singularities under homogeneous boundary conditions

Boundary conditions

on 6=0,¢ Configuration specifications
11-11 b=, , k=1
V-V d=m, 2w, k=1,f#0
K=C0S 2p— ¢ Lsin 2¢, f=—cotep, ¢+, 21
I or VI-II p=m— ., 2m— ¢K,K——¢ Ltang
I or VI-V k=1+2 cos 2—2¢ L sin 24, f——cotq’) ¢#m, 2w
-V =712, 3ml2, k=3, f=—3¢/2

¢=d,, f=(xk—1)(3—«) cote, p#m, 2m, k%3

sition from complex to real roots. These transitions occur for Details of the application of the identification process at-
any ¢>101.4° excepip=180° and 360°, and have<Qy tending the last of1.3), for the boundary conditions of Table
<0.75. 1, may be obtained from SinclaiB4]: Results are summa-

It can be expected that logarithmic intensification also ocized ibid. Every logarithmically singular configuration so
curs for the less singular branch ¢f under clamped-free identified complied with all of the conditions in the last of
conditions wherever there is a transition from complex td.3). Moreover, when situations arose during analysis in
real roots. Fork=2, R, in Fig. 2d is an example. For loga- which some of these requirements were complied with but
rithmic intensification being possible though, the rank condothers not, no logarithmic singularities were found.
tions in the second of1.3) need to be checked for these Given the importance of being aware of the participation
configurations as well. of logarithmic stress singularities, we reiterate the configura-

On occasion, repeated roots occur without a transitidgions so found here in Table 5. This table gives seven differ-
from complex to real values. This can be soli/d¢=0 for ent sets of specifications for configurations with log singu-
N and ¢ in (2.27). Actual examples ar®; andP,, both for larities.
k=1, in Fig. A. This is not obvious from the figure because In Table 5, is additionally constrained to the range for
the less-singular intersecting branch is not sho(gee, physically applicable Poisson’s ratios. This is broadest for
though, Fig. 14, Seweryn and Molski20]). For these plane strain. Hence
points, however, Dempsdp3] has that the rank conditions
of (1.3 are not satisfied and, consequently, logarithmic in-
tensification is not possible. Further in Table 5, the vertex anglés, , ¢, and ¢, are

Further configurations wherein logarithmic intensificatiog,,.p, that

can be expected are where there are transitions from complex
to real eigenvalues for plates in contact with friction. These JVe+1
includeR, of Fig. ¢, andRs andRg of Fig. 2e. Again, the ¢« =tang, , ¢K:SinflT
rank conditions need to be checked to see if this is really a
possibility. o o kdl(k—1)?+4cos2h)=(3xk—1)sin2p,  (231)

Typically logarithmic intensification of stress singularities
can be expected as stress singularities pass from being puherein the principal value of the arc sine is takens(@,
power singularities to oscillatory power singularities. In<#/2). The first 0f(2.31) realizes¢, =257.5°, a value pre-
some sense, the logarithmic intensification can be viewedasusly noted as that for the termination of power singulari-

a transition statebetween the two, resulting in stresses thdies with free-free conditions and antisymmetifyig. 2a).

are more singular than those with just power singularitieBpr =1, free-free eigenvalues coincide with those for
yet arguably less pathological than oscillatory singularitieslamped-clamped. Consequently this value for an incom-
We consider logarithmic singularities further in this sort gpressible solid under clamped-clamped conditions represents
role next when we review their occurrence without powea transition from stresses which are singular in themselves to

1<sk<3 (2.30)

terms. those which are bounded but have unbounded derivatives.
Pure logarithmic singularitiehave stresses which behavaNe therefore distinguish it as the poig in Fig. 2a. The
as same is true for all the other logarithmic configurations listed

in Table 5: They all represent transitions from power stress
singularities to no stress singularities. Further, they typically
For the pure logarithmic singularities @2.29 under the also represent transitions from real eigenvalues to complex.
homogeneous boundary conditions of Table 1, we need sat-Local fields containing logarithmic stress singularities for
isfaction of the penultimate conditions {1.3). Only then all the configurations listed in Table 5 can be obtained from
can a log singularity occur. These are the weakest stress Simclair [34]. For the contact-clamped plate when=1, f
gularities possible in elasticity, and consequently the hardesD, and&skz ¢, 12, fields are also available from Dempsey
to detect absent an a priori appreciation of their possidl21l]. All of these fields demonstrate that the fields(bfl)
participation. Accordingly, their asymptotic identification caralone are, in general, incomplete for the plate with homoge-
be of significant value. neous boundary conditions as in Table 1. In particular, they

o=0(Inr) asr—0 (2.29)
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Table 6. Inhomogeneous boundary conditions for in-plane loading  [35]). Again, they can be logarithmically intensified if the

Identifying Boundary Physical singularity coincides with that for homogeneous boundary
Roman numeral conditions description conditions. If, on the other hand, prescribed displacements
X P —— Uniform tractions are continuously differentiable, generally no stress singulari-
I u,=rA¢, u,=rA¢’ Pinching with lateral constraint ties are produced. An apparent exception occurs when the
\% us=rd¢, n,=fo,  Pinching with friction displacements are linear in) the integral of uniform traction

conditions in effect® For these conditions, we can similarly
expect pure logarithmic singularities.

Given the importance of identifying logarithmically sin-
ular configurations, henceforth in this section we consider
inhomogeneous boundary conditions as in Table 6. These are
the counterparts of those in Table 1 which include uniform
tractions or linear displacements.

The boundary conditions of Table 6 merit some explana-
All of the_ preceding singglarities for the in-plane loading O{ipn_ In Conditions 1, p is an applied pressure whitgis as
an elastic plate occur with homogeneous boundary condiconstant shear. In Conditions,IIA¢ can be interpreted as
tions on its radial edges. Here we consider what addition®le amount by which the vertex angle of an angular plate is
singular stress fields can be induced by inhomogeneqgiyced by as a result of pinching contact with a rigid inden-
boundary conditions. tor. With this interpretationA¢ is positive on a negative
For applied tractionswhich are themselves singular, ime'&-edge, and vice versa. If such contact occurs with no slip,
rior stresses are at least likewise singular. There is also tgg)/ =0: If it occurs with slip, we have Conditions’V The
potential of logarithmic intensification as {2.26). This can jnclusion of the possibility of\ ¢’ #0 is so as to replicate
occur if the configuration of interest shares the same Si”Q(fHSplacement discontinuities which can occur in boundary
larity as in the applied tractions when under correspondingnditions in finite element analysi§EA). Such disconti-
homogeneous boundary conditions. This would mean loggities occur in displacement derivatives at nodes when dis-
squared singularities in the event that the applied traCtiOB%cement shape functions are used as boundary conditions
were logarithmically singular. However, it would not seeny, submodeling with FEA, a practice implemented in some
that either power or log singularities in applied tractions argandard codegeg, Chapter 14, ANSY$36] and Section
likely to be needed in practice. 7.3, ABAQUS[37]; see Sinclair and Eppi38] for further
What is more likely are nonsingular applied tractions. lgxp|anatiop.
they are ord(”) asr—0 andy>0, then the interior stresses  ysing the conditions in(1.5), instances of logarithmic
are also nonsingular. This is so even if they get multiplied hytress singularities with the inhomogeneous boundary condi-
Inr because” Inr=0 atr=0 wheny>0. Alternatively, if tjons of Table 6 can be identified. Typically by this means,
the applied tractions are ond{) asr—0, we may see a tran- |ogarithmic singularities in problems have been identified in
sition between stresses which are nonsingular for tractiofig |iterature as follows: Conditiond-+1 in Kolossoff [15]
that are ord(?), to stresses which are singular for tractiongng pempsey[39]; Conditions [—II in Sinclair [40]; all
that are ord("”). Pure logarithmic singularities are naturatombinations of other conditions in Sincl§4] and Sinclair
candidates for such a transition: We look for further instancggq gppq3g].
of their being induced by uniform tractions in what follows.  The configurations so found are given in Table 7: Therein
For applied displacementstress singularities can also bgnere are twelve different sets of specifications for configu-

produced. In the first instance, these stem from prescribgions with log singularities. In this table,continues to be
displacements which are not continuously differentiafale

In ugx \/F) Then, Smgl‘"ar stresses Slmply maich the Slng;E-‘Apparent" because displacements which are linear ioan have discontinuities in

larity in displacement derivativesee, eg, Browning and Jutheir derivatives whem—0 on differento.

demonstrate that the original Williams’ eigenfunctions ar
incomplete for the problems considered in Williah2g.

2.4 Singularities with inhomogeneous boundary condi-
tions

Table 7. Configurations with logarithmic singularities under inhomogeneous boundary conditions

Boundary conditions
on 6=0,¢ Configuration specifications

1" or VI-I ¢=m, 2w, q#0
d=¢,, p#0 orq#0

- ¢=m, 2w, Ap#0 orA¢’'#0
k=1, A¢p#00rA¢p'+#0, ¢+ ¢,

V' -V d=m, 2w, Ap#0, k#1,T#0
f=0,Ad+0
VI-VI $=, , 2m
I” or VI-Il" b=¢,, TP, 2m— ., p+0orq#0orA¢’#0, k*— ¢ Ltanep
I” or VI-V ¢=, 2w, fp#0 orq#0

f=—cote, p+m, 2m, fp+#0 orq#0, k#1+2 cos 2—2¢ *sin 2¢
1=V d=, 27, Ap#0

¢=ml2, 3ml2, k=3,Ap#0 or fA¢p’#0, f#—3¢/2

f=(k—1)(3— k) ‘cote, p#m, 2mw, ¢, Ap#00orAg’#0, k#3
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Fig. 3 Examples of configurations with logarithmic stress singularisigkevy’s problem for a reentrant cornep& ¢, ), b) pressure on
a clamped acute cornek & 2), ¢) symmetric indentation by a frictionless rigid sharp platedisplacement shape functions as boundary
conditions for a submodel in FEA

constrained as i2.30 while ¢, , ¢,, and¢, continue to #0 in the local boundary conditions. This is in contrast to the
be as in(2.31). By suitably adjoining rigid body rotations, log singularities of Table 5 whose actual participation de-
any combination of boundary conditions drawn from Tablggends on far-field conditions.
1 and 6 can be realized by the combinations given A further instance of a logarithmic stress singularity for
in Table 7. Conditions [—I in Table 7 occurs in Levy’s problem, al-
Afirst instance of a logarithmic stress singularity in Tablehough such a log field is not included in the original solution
7 occurs for a step shear on a half-plage<(7 andq+#0). in Levy [41]. This problem entails an angular elastic plate of
The full stress field is given in Kolossoffl5]. A related vertex anglep subjected to a uniform pressyseon one edge
instance occurs for a constant shear on one side of a cragkile being free of stress on the oth@fig. 3a wherein ¢
(¢=2m). Complete fields are given in Dempsgy9]. In  =¢,). Levy’s traditional solution to the problem may be
both of these cases, the log singularity must participate iffound in Article 45, Timoshenko and Goodigt2]. By way
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of example, the normal stress, in Levy’s solution, in terms 27.! In addition to a logarithmic stress singularity induced

of the polar coordinatesand 8 of Fig. 3a, may be expressed by the pressurg for ¢= ¢, here, we have one for the

by uniform shealg—a generalization of Levy’s problem in ef-
fect. Fields for this log singularity may be found in Dempsey
[39].

(2.32) Another generalization of Levy’s problem is included in
Table 7. This occurs when the plate edge without applied
tractions is clamped rather than free. That is, for Conditions

In (2.32, it can be seen that, takes on the values of p,0 |'—II. Typically there are four transition angles with loga-

at #=0,¢, respectively, and that there is no logarithmic sindthmic stress singularities for this type of configuration

gularity in oy. However, also clear if2.32) is that the so- (Table 7,(2.30 and(2.31) for generalx; T,—T- in Fig. 2d
lution breaks down fogp= ¢, of (2.31). This breakdown for for k=2). These angles can be less than 188, Fig. ).

the critical vertex angle o, is passed by without commentFields for associated log singularities may be obtained from

in Levy [41]. It is noted in Fillungef43], but perhaps is not Sinclair [40].

as widely recognized today as it could (@, no mention of  One other generalization of Levy’s problem is also in-

its existence is made in Timoshenko and Good#?]). cluded in Table 7. This occurs when the plate edge without

Nonetheless, it is serious and must be remedied if any physpplied tractions is in contact. That is, for Conditiohs V.

cal sense whatsoever is to be made of elasticity treatmentsTokre is a range of transition angles with logarithmic stress

a loaded plate which is as in Figa3 singularities for this type of configuratiofiTable 7; ex-

Supplementing the fields used to gener@®8&2 by those amples are distinguished ag—T;; in Fig. 2e. Again angles
attending(1.2) rectifies the situation. This is done in Demp-<can be less than 180°. Fields for associated log singularities
sey[39]. The resultingo,, for example, may be expressednay be obtained from Sinclaj84].

B siné coq ¢— 0) — O coso
7o= P/ 1~ sing— ¢ cose

by Typically, the preceding logarithmic stress singularities
induced by uniform tractions can instead be produced by
9  cscoh, _ cohe_si\./e. laws. This is b_ecause.cohesive law conditio.ns can

op=— p{l— ¢— - W(Z(sm(ZB— by) admit rigid body translations which in turn produce uniform

* * tractions. Thus Conditions VI are generally shown as alter-

— (20— ¢, )cosp, )Inr+ (20— ¢, )(cog26— ¢, )  hatives to Conditions’lin Table 7. In this role, the condi-
tions given onp andq in Table 7 then apply to correspond-
ing uniform tractions within Conditions VI.

Turning to logarithmic stress singularities induced by in-
homogeneous displacements, we first consider those attend-
ing contact conditions. That is, Condition$ WV in Table 7.

For the case of an elastic angular plate being symmetrically
indented by a rigid frictionless plate with a sharp cortég.

—CO0S¢, ))} (2.33)

for ¢=¢, . Now there is a log singularity for this vertex
angle. Complete fields are given in Demp$89]. A reason-

ble t ition bet 3 d(2.33 i hieved in Ti 7 . .
able transition betwee(?.32 and(2.33 is achieved in Ting 3c), the finite rotations of one plate edge with respect to the

44). . I o
[44] atl)(t_her produce log singularities. This is so even for small

While it was once understandable to regard the bre . )
down in the traditional solution to Levy’s problem as parar-()t"’lt'c’nS (6=A¢=<1). Local fields can be assembled from

doxical (as in Sternberg and Koitd#5]), armed with the those for(1.2). Thus with ther and # coordinates of Fig.
analytical developments of Dempsg39] and Ting[44], it

now would seem to be far less so. Thus here rather than term( ¢, 4u Ag 1
¢, in Levy's problem a critical angle, we view it astian- [00] "1 s ?[2 Inr+14 } (2.34)
sition angleassociated with a logarithmic stress state which
is transitional much as in Section 2.3. _
All of the foregoing examples occur for vertex angle¥ith 7,=0, and
whereN=1 is an eigenvalue. That is, for angles where
=0 in Fig. 2. Such¢ represent transition angles in the fol- 2r A¢ Ad
lowing sense. As the vertex angein angular elastic plates U;=7————[(«—1)Inr—1], u,=2r6——  (2.35)

1+k ¢

¢

increases, there is a companion steady increase in the singu-
lar character of stresses near the plate vett®e Fig. 2.
These stresses go from power singularities in their derivevident in(2.34) is a log singularity which must participate
tives while being themselves boundeg£0~), to having for anyA¢#0.
power singularities in themselvesy£0"). Transition Asymptotically the same log singularity as (2.34 may
angles with transitional log singularities demark the twbe extracted from the global problem of indentation with
types of behavior.

We identify such transition angles with the lettdr *The case ofp=2 is not obviously a transition angle in FigaZThis is because it
throughout Fig. 2. Hence for the free-free plate of Fig, 2 is on a branch withy>0 only when¢> 2, a range of vertex angles not included in

X Fig. 2a. This branch can be seen in Figa,2Seweryn and Molsk[20], near “‘a’
we haveTq, T,, andTz corresponding tap of ¢, , 7, and =¢r2= therein.
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rotation of a half-space. This problem is solved in Section o, —2uA ¢
48.4, Sneddo46].1? Such response can be expected to be { ]: L sing.
. . . . * *
the case in other configurations wherein a plate vertex angle
gets extended or compressed. That is, that there is an isolated
logarithmic stress singularity with a coefficient proportional
to the relative amount of rotation and the elastic moduli of
the material rotating—see Bro¢k7] and references therein.
Other configurations with logarithmic stress singularities 2ulep 5
in response to contact conditions are identified in Table 7. TrH:_ZSiT[Sm 20(2Inr + @5 +2)+26(cos 2
These can also be viewed as transition stress states associ- * *
ated with transition angleseg, T1, and T, of Fig. ). —C0s¢, )] (2.36)
Fields can be obtained from SincléB4]. (A
Logarithmic stress singularities can be induced by inho- y =————[2(cos¢, —cos 28)Inr +26 sin 26
mogeneous displacements without contact conditions. This %% SiN®x

[ 2 cosg, (Inr+2Inr—6?)
Ty

{ +] [2(cos20—cose, )(Inr+1)

—26sin 20+ ¢2 cos 2]

occurs for Conditions [l in Table 7. For the case of a — ¢2 cos 2]
. . . *

straight boundary ¢= ), these are the spurious log singu-

larities that can be introduced by the use of shape functions rA¢

as boundary conditions in submodeling in finite element Hs= @2 sin¢>*[2(Sln 20-26cosg,)Inr+26(cos 2%

analysis. An example involving four node elements is shown , .
in Fig. 3d. Therein, log singularities at the node @toccur — OS¢, )+ ¢ sin 26]
whenever there is a discontinuity in the derivatives of thigr x— 1. Other fields with log-squared singularities may be
boundary displacementsandv. That is, whenever the con-obtained fronm34,4Q.
stants are such that #c; or cj#c,. Fields are given in
Sinclair and Eppgd38]. These spurious singularities when
shape functions are prescribed also occur for higher order STRESS SINGULARITIES FOR THE IN-PLANE
elements and on any smooth submodel boundiaigl). LOADING OF AN ELASTIC PLATE MADE OF

Other configurations with logarithmic stress singularitieSIULTIPLE MATERIALS
when Conditions VI and [loccur in concert are identified in ) ) )
Table 7. These, too, are associated with transition ariglgs -1 Formulation and eigenvalue equations
wheny=0 in Fig. ). Fields can be obtained from SinclairHere we consider extension of the treatment presented in
[34]. Section 2 to plates made up of multiple elastic sectors. We

In closing this section we observe that most of the lofist formulate this extended class of problems for homoge-
singularities identified in Table 7 stem from compliance witReous boundary conditions. Then we outline analytical
the last of(1.5) for ny=4 whenr ,=3. Consequently, they means that can be used to derive companion eigenvalue
do not requirerepeated roots of the eigenvalue equatiodquations. We stop short of actually presenting all these
Indeed, for the most part, repeated roots are specifically &@uations because of their relative complexity, but do furnish
cluded in Table 7. Just exactly when this is done in Table'¢férences which contain them subsequently in Section 3.2.
can be determined by comparing it with Table 5, every set of 10 Pegin, we continue to use cylindrical polar coordinates
specifications in the latter table corresponding to a repeafe@"d? With origin O to describe the entire angular region of
root. Moreover, when such exclusions are relaxed and fBlerest?, with its complete vertex anglé. Now, though?
peated roots admitted, typically?n stress singularities are 'S cOmprised oN subregions;, i=1,2,...N, and¢ of N
produced, in accordance with the first ¢f.5. The only subanglesg; (Fig. 4). Thus

exception is for the second set of specifications for Condi- N N
tions V-V in Table 5 because the rank requirement is not "= U %, ¢=i21 éi 3.1)
met. =1 -

As an example of a log-squared singularity, we considamere
symmetric indentation by a rigid sharp plate as in Fig.8it
now with lateral motion on the contacting edges completely
constrained. That is, Conditions’ #II” with A¢+#0 and :

A¢'=0. Forp=¢, of (2.3) andk=1,\=1 is a repeated 0i=2 bir
root (see Table 5, cf Table)7The corresponding fields can =1
be assembled from those f@ir.1), (1.2), and(1.4). Algebraic with the understanding,=0. With these geometric prelimi-
details can be obtained from Sincl&84]. In terms of ther  naries in place, we can formulate our class of composite
and 6 coordinates of Fig. & the resulting fields have: problems as follows.

In general, we seek the planar stress componentsr,

2There is a factor o~ missing from the stresses given at the end of Section 48.?,'nd 7:“9 and their companion dlsplac,jem.eru,s and Up, as.
where “a” is as in Fig. 87 therein. functions ofr and 6 throughoutR, satisfying: the appropri-

Ri={(r,0)|0<r<o, 6, _,<60<06;} (3.2)
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Fig. 5 Sketches of interfaces) separating locking surfacé€on-
ditions O, b) adhesive law actiofiConditions B

Fig. 4 Geometry and coordinates for the composite angular elastic

plate ..
Conditions C are from Rap48]. They do not appeal as

being particularly physically applicable. They might be inter-
preted as the conditions for a surface which is rough to the
atefield equation®f elasticity;interface condition®n inter- point of locking and thereby prohibiting slipu{ matched,

nal plate edgesyoundary conditionen external edges if the yet on the point of separationr{—0). Such an interface is
plate is open $<2r), or further interface conditions if itis gyetched in Fig. &

closed =2m); and regularity requirementsat the plate  conditions D are also from Rdd8]. Essentially they are
vertex. The field equations hold O® (i=1,2,...N) and areé {he same as conditions given in Erdogan and GUipgi.

given by(2.2), (2.3, and(2.4) with 1« and « in (2.3 being They are the composite counterpart of Conditions IV when
replaced byu; andk;, wherep; is the shear modulus of the . : L .
the latter are interpreted as being for a thin rigid reinforce-

material comprisingR; and x;=3—4w; for plane strain, (3 bl . S
—»)I(1+ v,) for plane stress, with, being Poisson’s ratio ment. As such, they model a thin inclusion which is rela-

of this material. The admissible interface conditions afiely Stiff compared to its surrounding matrix: It is stiff
listed in Table 8 and hold o= 6, with i=1,2,...N—1, if enough to restrain extension, however it is not so stiff that it

the plate is operi,=0,1,...N if the plate is closedi=0 and restrains bending.

N are for but one set of interface condition¥he admissible ~ Conditions E are the composite counterparts of cohesive
boundary conditions continue to be as in Table 1 and hold stress-separation laws. Thksandk’ are the stiffnesses as-
6=0,¢ if the plate is open. And the regularity requirementsociated with “springs” resisting normal and lateral separa-

are the same ag.5) but now hold on?;, i=1,2,... N. tion on an interface. This action for normal separation is
The interface conditions of Table 8 merit comment. Corsketched in Fig. 5 where

ditions A are the traditional conditions usually assumed fora =~
perfectly bonded interface. Conditions B are for contact with Ug = lim us(6> 6;) (3.3)
friction governed by Amonton’s law. As such, to be physi- =0
cally applicable they further require that the normal stress béth u, defined analogously. In the elastic regime, the stiff-
nowhere tensile on the interface, ag™6), and that relative nesses in these laws should be chosen so that they are con-
lateral motion on the interface be opposed by shear tractigistent with the elastic constitutive laws of the materials
there. Quite frequently in singularity analysis the special casemprising the interface. When this is done, the adhesive
of frictionless f=0) contact is treated, so we distinguish theonditions are the physically appropriate ones for a perfectly
associated conditions byy,Bn Table 8. Conditions A and B bonded interface: Conditions A are just a simplification of
are the most common in singularity analysis. them obtained by effectively letting andk’ — oo instead of
their elastic values.

Conditions E also admit to other interpretations. One is as
a model of a flexibly bonded interface in studies of elastic

Table 8. Interface conditions for in-plane loading . . : ) )
wave interactions in Jones and Whitt[&0]. Another is as a

Identifying Matched Additional Physical . . . . .
letter quantiies  conditions description model for an interface in a composite which permits some
A P Perfectly bonded ih'p mﬁLeng almd LkegU|IIogﬁ5;]f(f9r thlﬁ latter .mtfgr.pretatlon,
U, Uy o is effectively taken to be infinite, thougdtl is finite).
B Ty, Trg Tro=foy Contact with friction As in Section 2.1, the preceding formulation is absent
B, o g 19=0 Frictionless contact  cONditions at infinity and insists on bounded displacements.
Uy _ _ The basic reasons for these two aspects remain the same.
c oo T 74=0 Ssli‘]?:éggng locking However, we are not aware of a formal extension of the
D o u,=0 Thin rigid inclusion ~ completeness argument for elastic fields with bounded dis-
Ur, Uy ) placements to composite configurations. Absent such, the
E Ty, Trg ae=k(uy —uy) Adhesive

regularity conditions(2.5) must be viewed as provisional

=K (U7 —u”) stress-separation laws ; g
r when applied tdN-material plates.
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Analysis follows that for single material plates. The con- A—|l, B—V, By—lll

ditions for singularities with homogeneous boundary (3.6)
conditions/interface conditions remain as {ft.3. Now, C—IvV, D—ll, E=VI
f[hough, the order of the determinant involved is typicallyy, M,_; andi=1 or 2. Again singular eigenvalues should
increased to match single material values.

na=4N (3.4) A third check for bimaterials is to let one of the two

materials become limp. Now consider the fieldg1nl) un-
Hence the algebra involved in expanding determinants der the limit x—0, but first make the exchangesc, for
obtain eigenvalue equations in closed form can be considey- u.c, for ¢,, and so on to avoid unbounded displacements.
ably more extensive. While the eigenvalues from the detétow the stresses go to zero. We therefore set stresses to zero
minant could simply be numerically calculated without algen the interface conditions to recover corresponding bound-
braic expansion, it is nonetheless useful to obtain gy conditions. Hence as;—0,
simplified single expression for the eigenvalue equation.
Such expressions are more readily used than the raw deter® ™
minant when the analysis of further specific configurationsis c_.| p—_Jv, E—lI
required. In addition, typically such expressions facilitate ) o )
checking by comparison with special cases/other indepdfRl Rs-i andi=1 or 2. Again, singular eigenvalues should
dent algebraic analysis. To assist in obtaining them, sorffgich single material values. _ _ o
approaches for helping with the algebra entailed are offeredOn Occasion the eigenvalue equation for a bimaterial is
in Dempsey and Sinclafi3] and Ying and Kat452].13 |ns.ens_|t|ve as to whetheml—mo or w,—0, or vice versa.

Once an eigenvalue equation is obtained for ahhis s_lmply means it should recover both of th(.a_elge.nvalue
N-material problem =2, verification is important. This €guations for the corresponding boundary conditionif)
is a key concern because of the extent of the algebra #2d (3.7) under either limit. For example, the eigenvalue
volved. As previously mentioned, sometimes such verificgquation for the interface crack can be written as
tion is afforded by other independent analysis. Otherwise, in _ Aivgfuy
addition to the obvious check of redoing the algebra, one can0=sir® A 1— Tgsmz N (3.8)
also perform numerical checks. That is, evaluate the expres- )
sion for the eigenvalue equation for diverse values of thehere fi;=pu;+ kyup and o= o+ Koy . Equation(3.8)
parameters involved, then compare with a direct calculatiésinsensitive as to whethes; — o or u,—0. From(3.6) and
of the determinant from its originating matrix. Such compari3.7), these limits correspond to-All or A—I. Thus the
sons need to take account of any factors removed in simpliterface crackl-A-1) becomes a half-plane with II-1 or I-I.
fying the expansion of the determinant to obtain the eigekinder either limit,(3.8) recovers the product of the eigen-
value equation. They should also be carried out for paramet@lue equation for a clamped-free half-plaf{@.17) for ¢
values which do not, in themselves, realize simplifications ef ) with the eigenvalue equation for the free-free half-
the determinant. plane ((2.9)(2.13) for ¢p= ).

Once checked, eigenvalue equations need to be solved foln addition to serving as checks, the limiting cases of
singular eigenvalues. Generally this requires numericd.5), (3.6), and(3.7) enable a ready first assessment of the
analysis. Such numerics are straightforward for the mosihgular stresses involved when faced with a new bimaterial
part. The eigenvalues so computed can be verified by bagknfiguration which lacks any singularity analysis. It is also
substitution. possible to extend the application of these types of limits to

At this point, the entire analysis can be further checked Igpnfigurations involving more than two materials.
consideringimiting cases For bimaterial plates with Condi- For the general numerical analysis of eigenvalues for

I, B—l, Bg—lI 3.7)

tions A, one check is afforded by setting other than special cases, the parameter space to be searched
_ B is now increased significantly in dimension over that attend-
M1= M2, Ki= K2 (3.5) ing configurations comprised of a single material. This is
Then the eigenvalues for the corresponding single materRgcause it now includes multiple vertex angles as well as
configuration should result. multiple pairs of elastic moduli.

A second check for bimaterials is to let one of the two For bimaterial plates, dimensional analysis reduces the

materials tend toward being rigid. Consider the fieldslid) Nnumber of independent elastic moduli from four to three.
under the limitu—c: The displacements go to zero. wel his number can be further reduced by employing just the

therefore set displacements to zero in the interface conditid¥4 material constants and 8 defined by

of Table 8 to recover the corresponding boundary conditions + +

of Table 1 for the one remaining deformable sector. Hence as( ,uz( Kl[ _ ] 1 —,ul( Kz[ _ ] 1)

Mi— 0, { ] = (39)
B Mokt 1)+ py(ko+1)

it is also possible to employ symbolic manipulation codes to expand determinants. Bhe « and B of (3.9) are given in Dundur§53]. This article

present this usually results in lengthy expressions for the determinant. Conseque Ya discussion which points out the reduction in the number
such codes typically only provide an alternative to direct numerical treatment of tll1e

original determinant. of independent elastic constants that can be achieved by the
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introduction ofa@ and 8 into the butt joint problem treated in pretation to a degree. For plane stress, substituting. fand
Bogy[54]. Equivalenta and 8 were given earlier in Zak and « in terms of Young’s modulug and Poisson'’s ratie gives:
Williams [55] to reduce the number of independent elastic
constants for the specific problem of a crack terminating per- 4=
pendicular to a bimaterial interface. Dund{is§] establishes
general criteria for bimaterial configurations under which
such reductions can be made. Thus,« is a normalized measure of the mismatch in Young’s
To demonstrate how the reduction is effected, we consid@oduli, while B reflects the difference in Poisson’s ratios
a perfectly bonded bimaterial with stress-free eddes-1). when there is no difference in Young's moduli. Similar re-
Absent a difference in materials, this plate’s stresses a@lts hold for plane strain iE is exchanged foE/(1—1?).
completely independent of elastic moduli, as is any singular- For bimaterials, the ranges<Qu; <o, 0<»;<1/2, andi
ity exponent(see(2.9) and(2.13 for I-1). Consequently, only =1,2 limit accompanyingr and 8 to within parallelograms
the traditional matching conditions associated with perfed@undurs[53]). These are given by
bonding can introduce any dependence on elastic moduli.
Without loss of generality, we take the perfectly bonded in-
terface to occur a®=0. Then, from(1.1), the matching con- «a—1 a+1 _
ditions result in the following sparse set of equations: —3 =B=——...plane strain (3.13)

E,—E; Vo=V

E,+E;’ Bl=—2
Ep=E;

(3.12)

—-1<a<l1

Ci+\Cz+C3=C; +AC3 +C3 3a—1 3a+1
<pB<
8 8

The parallelogram for plane strain encompasses that for
(3.10) plane stress and accordingly is the one to be searched if all
C; +Acy —Cy=C; +NC4 —Cy possible singular eigenvalues are to be identified. Often this
search can be readily undertaken using an inverse approach.
That is, assuming a specific value of singular eigenvalue and
then solving fora and 8.

In (3.10, the constants associated with the material above It LS alsfo . pc(j)ssmlz totusle t;/_vo setstmatndfﬂ to ][e dutcefthe f
9=0 and modulix, and «, are distinguished with a plus "UMPer ofindependent efastic constants from fve to tour tor

sign, those with material below ang, and x, with a minus :rlmattﬁ rla\iln?rla;es:tisie }?ogucnh(;, Inouer; ar;d t\:léaa]r} Tr:]\(/anr
sign. Now subtracting the second 8.10 from the first 00, the oduction ofas and5s can enable a erse

givescy in terms ofc; andc,; and the two combinations of approach to be adopted.
elastic moduli

...plane stress

M1 - -
Ci +\C3 — Kk1C3 =—(C] +\C3 — KkoC3)
M2

M1 _ - -
02++)\CI+K1CI=E(CZ +\C; + KyCp)

3.2 Power singularities identified in the literature

M2~ My Mot Kopy ) T ) .
kit D)’ gkt ) (3.11) We now review contributions in the literature that have ef-
fected asymptotic assessments of possible stress singularities

Back substituting into the first of3.10 then givesc, in for N-material plates under in-plane loading, starting with
terms ofc; andc; and the same two combinations. Andhower singularities. We carry out our review in approximate
performing the same operations on the third and fourth ofder of increasing analytical complexity. We begin with bi-
(3.10 givesc, andc, each in terms ot, andc, and the material plates and arguably the simplest of these, those in-
same two combinations. Thus I-A-l stresses and singularitglving “cracks” (Fig. 6): Here “cracks” means mathemati-
exponents need only depend on the two combinations cHl slits which may or may not have the traditional stress-free
elastic moduli given in3.11). While these two combinations conditions of fracture mechanics. Next we consider open bi-
are closer to those used in Zak and Williafg$] than those material platesFig. 7): Altogether, the geometries in Figs. 6
in Dundurs[53], with some algebra they can be shown to band 7 are the ones which have received the most attention in
equivalent tow and 3 of (3.9). the literature. Thereafter we conclude the section by review-

Similar analysis establishes that moduli dependence dag contributions for other bimaterial plates and some trima-
be reduced to just that o and B8 for bimaterials and with terial ones.
any of the interface conditions A, &nd therefore B, or C, There is considerable duplication within the investigations
under any combination of boundary conditions involving Ieviewed. We include later references for problems if they
Ill, or IV (Table 9. Given the equivalence of cohesive lawepresent a means of verification of earlier research, or if
conditions with stress-free conditions as far as eigenvaltiey provide further information on the singular stresses in-
equations are concerned, singular eigenvalues with Conddlved. We do this irrespective of whether or not we can
tions VI in bimaterials and with interface conditions A, B, oenvisage a situation in which the singular configuration is
C can also be expected to depend onlysoand 3. physically appropriate. We exclude later references other-

The constantsr and 8 have seen widespread use for suctvise: A significant number of references are thus excluded.
configurations since Dundurb6], and have come to belIn particular, we do not include later references which ana-
known asDundurs parametersThey admit to physical inter- lyze a global problem whose singular character was previ-




402 Sinclair: Stress singularities in classical elasticity—II Appl Mech Rev vol 57, no 5, September 2004

from Tables 1 and 8 are I-A-l. Williamfs8] provides both
the eigenvalue equation and resulting complex singular ei-
genvalue in closed form. These results are confirmed in Bogy
[59]. The eigenvalue equation is equivalent to that given in
(3.9, while the associated singularity exponent is

Hys Vy

&

Ko, Va 1 1
Y=5 n:ﬂlnﬁ (3.14)
(@) (@) wheref; and i, are as in(3.8).

For the interface crackFig. 6a) with clamped conditions
(II-A-11'), Theocaris and Gdoutd$0] give an eigenvalue

: equation and complex singular eigenvalue in closed form.

&Y Ting [61] furnishes a different expression for the imaginary

i Ve part of the complex singular eigenvalue: This latter result is
Lo, Vy fho, Vs confirmed in Ballarini[62] and elsewher& The singularity

My Vs exponent from Tind61] for the clamped interface crack is

B Ve similar to that for stress-free flanks. It has

QN

1 1| K2/’.\Ll
YT 1T "

= 3.15
KiM2 ( )

(b) (b)

Fig. 6 Bimaterial “crack” geometries analyzed for stress singuThus the imaginary part differs by at masi.175 from that

larities: a) interface cracka’) interface crack ending at a kink on'" (3.14). ) )
the interfacep) crack ending orthogonal to an interfad®) crack For the interface W't_h one flank free .and th? other
ending obliquely to an interface clamped(I-A-Il'), Theocaris and Gdout¢§0] give an eigen-

value equation. Closed-form expressions for singular eigen-
values are given in Ting61].
ously well appreciated—the contribution of this genre of in- For the interface crack with contact with friction between
vestigation lies in the implications of the globalthe crack flankgB-A), Comninou[63] provides an eigen-
configuration analyzed, rather than singularity identificatiornalue equation. This equation is confirmed in Dempsey and
For theinterface crackof Fig. 6a with stress-free crack Sinclair[64]. Singular eigenvalues follow by inspection and
flanks, the corresponding boundary and interface conditioase furnished in Comnino[63], as is the companion eigen-
function. The simpler frictionless case {B\) is treated in
the Appendix of Comninoyi65].

For the interface crack when there is contact with friction

on the interface ahead of a stress-free cr@ddk-1), Gdoutos
I N and Theocari$22] provides an eigenvalue equation in terms
of Dundurs parameters. This equation is confirmed in

Comninou[66]. An expression for the resulting singular ei-

genvalues is given in Gdoutos and Theoc@?d]. The sim-
1o, ¥, o, Vy pler frictionless case (I-§1) is treated in Dundurs and Lee
\ [67].
Finally, for the interface crack when an inextensible in-
(a)

clusion is inserted into the cra¢P-A), Dempsey[21] gives

@) an eigenvalue equation. Closed-form expressions for singular
eigenfunctions are given in Wi68].
We next considekinked interface crackddere the geom-
etry for these cracks is taken to be such that the “crack” still
\ Hys V4 lies between the two materials but now terminates at a kink
on their interfacgFig. 6a’). This geometry may be viewed

7

as a generalization of that for the previous straight interface
Ko vy crack (Fig. 6a).
\\\ For the kinked interface craclFig. 6a") with stress-free
flanks (I-A-l), Bogy [59] furnishes the eigenvalue equation
in terms of Dundurs parameters. This eigenvalue equation is

(b) (¢ confirmed in Dempsey and Sincldi84]. In addition, Bogy

Fig. 7 Open bimaterial plate geometries analyzed for stress singg®] Provides singular eigenvalues for a variety of kinked

larities: a) butt joint, ') oblique butt joint,b) two plates of equal
vertex anglesg¢) angular plate on a half-plane it is also implicit in Erdogan and Gup{@9].
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interface cracks. These eigenvalues are numerically detBempsey and Sincla(i64]. This equation is the same as for
mined for the most part. Further numerical eigenvalues asgmmetric loading®

given in Chen and Haselj69]. Theocaris and Gdout¢s0] ~_FOr @ crack terminating normal to an interfadg. 60)
and van Vroonhoveli70] also treat kinked interface cracksWith contact with friction between the flankeB-A-A),

with stress-free flanks, but do not use Dundurs parameterg.omnlnou and Dundurk77] furnish an agenva}ue eguatmn .
. . . o in terms of Dundurs parameters. Corresponding singular ei-
For the kinked interface crackFig. 6a') with clamped envalues are provided: These are independent of the value
conditions either on one flanki-A-Il') or both (II-A-11), 9 P ' P

. ) ) , of the coefficient of friction.
Theocaris and Gdoutd$0] gives eigenvalue equations and £ 5 siress-free crack terminating normal to an interface
some singular eigenvalues. which is itself in contact with frictior(1-B-B-I), eigenvalue
For the kinked interface crack with crack flanks perfectlggyations when loading is symmetric or antisymmetric are
bonded(A-A), equation(19) of Bogy and Wand71] is the  furnished in Dempsey and SincldB4] in terms of Dundurs
eigenvalue equation in terms of Dundurs parameters. Thiarameters. These equations are confirmed in Wijeyewick-
equation is confirmed in Dempsey and Sincl[&#4] and else- rema, Dundurs, and Keg78] which in addition provides
where. In addition, Bogy and War|g'1] provides singular singular eigenvalues for both modes of loading and a range
eigenvalues for quite a variety of such kinked configurationef values of the coefficient of friction. The simpler case of
Chen and Nisitani72] provides the associated eigenfunctioffictionless contact (I-g-Bo-1) is treated in Gharpuray, Dun-
as well as further eigenvalues. Van Vroonhoy@g], Pageau, durs, and Kee[79].
Joseph, and Bigger¥3], and Chaudhuri, Xie, and Garala, Finally, for a stress-fr_e_e crack terminatin_g normal to an
[74] also treat the same kinked configuration without usiri§térface on which Conditions C or D hold, eigenvalue equa-
Dundurs parameters. tlons' are av:?uIabIe as follows: for 1-C-C-1 with either sym-
For the kinked interface crack when there is contact wirﬂrzi;r:ﬁ ?err?:;'S(;);rggﬁglﬁslossrlgg{ggg [f);erDsegF gg ds(lari]t(li:zlrr
friction between the crack flank8-A), an eigenvalue equa- ’

. . . . symmetric or antisymmetric loading, from Dempg].
tion may be found in Dempsey and Sinclg@#] in terms of For the more general instance of a crdekminating ob-

Dundurs parameters. Corresponding singular eigenvalues faf,e|y (Fig. &0'), several investigations are available. When
a variety of such configurations are numerically determingde crack is free of stred$-A-A-1 ), Bogy[76] furnishes the
in Dempsey[21]. If contact with friction also occurs on the gigenvalue equation in terms of Dundurs parameters, as well
interface ahead of the crad¢B-B), an eigenvalue equationas singular eigenvalues for a variety of such configurations.
may be found in Dempsey and Sinclgé#] in terms of Dun- Fenner{80] and Yong-Li[81] compute singular eigenvalues
durs parameters. directly from the determinant without algebraic expansion,
For the kinked interface crack when Conditions C athough Fennef80] does establish that eigenvalues depend
Table 8 hold, eigenvalue equations in terms of Dundurs pad only two material constants. The eigenvalues in Fenner
rameters for A-C, B-C, and C-C may be found in Dempsd{30] and Yong-Li[81] include ones which agree closely with
and Sinclair[64]. Finally, for the kinked interface crack corresponding values in Body6] (provided a state of plane

when Conditions D of Table 8 hold, eigenvalue equations f§f"€SS i assumed in Yong-[81]). Wang and Cherig2]
A-D, B-D, C-D, and D-D are given in Dempség1]. treats the same configuration: On occasion, the singular ei-

genvalues in Wang and Ché&2] agree with corresponding

We now consider “cracksterminating at an interface . . ) oo
) . : ) . values in Bogy[76], but in some instances there are signifi-
rather than lying along it. The simplest such configuration Is

hen th K imoi iah Ba. &) b Cant discrepancies between the two.
when the crack impinges at a right angfgig. &), because For a crack terminating obliquely at an interfafeig.

then the geometry is symmetric enabling symmetric and 35') with flanks in contact with frictior(B-A-A ), Comninou

tisymmetric loading to be analyzed separately. As a consgsd pundurg77] furnishes an eigenvalue equation in terms

quence, this special case has received attention by a numifepundurs parameters. Comninou and Dundi#g] also

of investigators in the literature. provides singular eigenvalues for varying angles of incidence
For a crackterminating normatlto an interfaceFig. 6b) of the crack and different coefficients of friction.

and having stress-free flanKkA-A-1), Zak and Williams For a stress-free crack terminating obliquely to an inter-

[55] furnishes an eigenvalue equation for loading which #&ce which is itself in contact with friction(I-B-B-I),

symmetric about the crack. This equation is in terms of pXVijeyewickrema, Dundurs and Kegt8] furnishes an eigen-

rameters which are equivalent to those of Dundurs. It is co¥@!ue equation in terms of Dundurs parameters. When sim-

firmed in Dempsey and Sincla64].}> Zak and Williams pllfled for special instances, this equation agrees with others

[55] provides singular eigenvalues. Further singular eigepil]- Et)heBIit(Iargtutre. tTge. s(isnk]‘pler cas% of dfrictionlgs;é;]ntact
values are given in Khrapkol75] and Bogy[76]. The ei- (I-Bo-Bo-1) is treated in Gharpuray, Dundurs, an '

envalue equation for antisymmetric loading is given iﬁT—
9 q y 9 9 aken together, the eigenvalue equation for both symmetric and antisymmetric re-

sponse is given as a simple squared term in B@@). This equation appears to have

an extraneous factor of Sinm—see(28) and (18) et seq ibid. The same factor is
15There would appear to be a typographical error in the equation in Zak and Williampsesent in the eigenvalue equation for when the crack terminates obliquely. It would
[55]. All that is needed to correct this error is to replace gosith cos\ . not appear to lead to errors in eigenvalues reported.
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There are some further generalizations for stress-free The stress-free bimaterial plate, with constituent plates
cracks terminating at an interfa¢eA-A-l) which are ana- with equal vertex angle=ig. 7b), can have the interface in
lyzed in the literature. If the crack flanks in Figb'6are contact with friction(I-B-1). Theocaris and Gdout¢88] fur-
allowed to subtend a finite angle at their tip and thus becomishes the eigenvalue equation in terms of Dundurs param-
a reentrant corner, an analysis may be found in Tan aaters under these conditions. This equation is confirmed in
Meguid[83]. If the interface in Fig. B’ is allowed to have a Dempsey and Sinclai64] (again, the sign of the friction
kink at the point where the crack terminates, an analysis megefficient has to be changed’heocaris and Gdoutd$8]
be found in Pinsan and Zhupirig4]. also provides singular eigenvalues for several vertex angles

We next consideopen bimaterial platesvhich do not, for and any value of the coefficient of friction.
the most part, involve crackéig. 7). We begin with prob- The last open bimaterial geometry investigated quite fre-
ably the simplest such configuration, thett jointof Fig. 7a.  quently in the literature is that of plate sector on a half-
When the outside surfaces are free of stress and the joinpligne(Fig. 7c). When the outside edge of the plate and half-
perfectly bondedI-A-1), Bogy [85] furnishes the eigenvalue plane surface exterior to it are free of stress, and the two are
equation in terms of Dundurs parameters. This equationfisrfectly bonded along their interfadeA-1), Bogy [59] fur-
confirmed in Dempsey and Sincl4B4]. Bogy[85] also pro- hishes the eigenvalue equation in terms of Dundurs param-
vides singular eigenvalues: These are consistent with coréers. This eigenvalue equation is confirmed in Gdoutos and
sponding values in Hein and ErdogE86]. The ratio of the Theocarig[22]. Singular eigenvalues when the vertex angle
shear moduli for which a power singularity first starts t®f the plate is 90° are provided in Bog$9]. Singular ei-
appear is given in Kubo, Ohji, and Naka7]. genvalues for other vertex angles are given in Hein and Er-

For the butt joint(Fig. 7a) with stress-free outside surfacedogan[86] and Gdoutos and Theocafi2].
and contact with friction on the interfade-B-1), Theocaris ~ For a plate on a half-plang=ig. 7c) when the plate is in
and Gdouto$88] furnishes the eigenvalue equation in termgontact with friction(I-B-1), Gdoutos and Theocar(ig2] fur-
of Dundurs parameters. This equation is confirmed in Demfishes the eigenvalue equation in terms of Dundurs param-
sey and Sinclaif64] (the sign of the friction coefficient has eters. This equation is confirmed in Comnir{6é]. Singular
to be changed because the friction condition is applied ore#yenvalues are provided in Gdoutos and Theodads for
negative 6-face in Theocaris and Gdoutd88], a positive plate angles of 60° and 90° and varying friction coefficients.
¢-face in Dempsey and Sincldié4]). In addition, Theocaris Singular eigenvalues for some other vertex angles are given
and Gdouto$88] provides singular eigenvalues for varyindn Theocaris and Gdoutd89]. The simpler case of friction-
coefficients of friction. less contact (I-B-1) is treated in Rag48] and Dundurs and

The more generaiblique butt jointhere has the interface Lee[67].
meet the outside free surface at an angle other thar{Fig° There are some other bimaterial plates with asymptotic
7a’). When the joint is perfectly bonde@-A-1), Bogy [59] analysis in the literature. For the perfectly bonded bimaterial
furnishes the eigenvalue equation in terms of Dundurs palate with stress-free edge$-A-l) and arbitrary vertex
rameters. This equation is confirmed in Dempsey and S@Pdles, an eigenvalue equation is given in Aksenfié). In
clair [64]. Singular eigenvalues are also provided in Bog{ms of Dundurs parameters, it is furnished in B¢g9].
[59] for several angles of incidence of the interface with th&hiS latter equation is confirmed in Dempsey and Sinclair
outside surface. Further singular eigenvalues are given [ff- If one or both of the edges are clamped instead, respec-
Hein and Erdogafi8é] and Rad48]. Geometries for which tive eigenvalue equations are furnished in Dempsey and Sin-

a power singularity first starts to appear are given in R&TRIr 1[764]- These equati'ons are gonfirm-ed in 'Ying and Kat'z
[48], and Kubo, Ohiji, and NakdB7]. [52].%" The second configuration is also investigated in Aveti-

For the oblique butt jointFig. 7a’) when the interface is Sian and Chobaniaf91]. If both edges have rigid thin rein-
in contact with friction(1-B-1), Theocaris and Gdoutdgg] forcements(IV-A-V), the eigenvalue equation is given in
furnishes the eigenvalue equation in terms of Dundurs p3¢MPsey and Sinclal64] in terms of Dundurs parameters,
rameters. This equation is confirmed in Dempsey and SRd Some eigenvalues are given in R48]. . _
clair [64] (again, the sign of the friction coefficient has to be Ei9envalue equations for bimaterial plates with other in-
changeil In addition, Theocaris and Gdoutf&8] provides terface conditions are available as follows. In terms of Dun-

singular eigenvalues for several angles of incidence aflyrs parameters for stress-free bimaterial plates with differ-
varying coefficients of friction ent interface conditiond-B-I and I-C-I) and arbitrary vertex

A further open bimaterial geometry investigated in thgngles, eigenvalue equations are given in Dempsey and Sin-
literature is that of twplates with equal vertex anglé5ig. clair [64]. In terms of Dundurs parameters for further closed

7b). When the outside edges of the plates are stress free QHHatT“aI plates{_A-Cs, B-C, and C(:j—@s,_elgle;XaIuEe_ equat;ons
they are perfectly bonded along their interfdté\-1), Bogy are aiso glvenl n gmz;gy aTI (;néé d] Igenvalue
[59] furnishes the eigenvalue equation. This equation is Coﬁguathns involving &-on |t|_ons and t-on |F|ons B or C are
firmed in Dempsey and Sinclai64]. Singular eigenvalues given in Dempsey[21]. Eigenvalue equations involving

; - Conditions D are also given in Dempsg2/4].
are also provided in Bogy59] for several plate vertex
angles. Further singular eigenvalues are given in Ri.
Geometries for which a power singularity first starts to aéiln addition, these equations appear to be consistent with those given in Aksentian

9

X i R 0] providedm; is taken to be Poisson’s number rather than Poisson’s ratio as stated
pear are given in Rapt8] and Kubo, Ohji, and NakdiB7].  onp 193. That is, provideth=1/v, .
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Turning to thetrimaterial plate the simplest of such con- the preceding continue to be advanced in the literatage
figurations occurs when the plates are all comprised of tMurakami[95] and Wijeyewickrema et dl78]). Typically
same material. Picu and Gufi@2] treats a closed plate of these have
this type with frictionless contact on its interfaces
(Bo-Bg-By). Singular eigenvalues are independent of elastic p— E:o for A\=1 (3.16)
moduli and are given for a range of vertex angles in Picu and 2

Gupta[92]. Other degenerate trimaterial plates wherein theWhiIe appealing in its simplicity(3.16) is not sufficienfor a

are not three distinct materials include the crack geometri@@ singularity withhomogeneouboundary conditions, and

of Figs. & andb’ reviewed earlier. _ it is not necessaryor a log singularity withinhomogeneous
When a trimaterial plate is actually comprised of thref, \nqary conditions. To remove any doubt that this is so, we

distinct materials, analysis can be extensive. Nonetheleﬁﬁnish some demonstrations

there are some true trimaterial plates investigated in the lit- As a first demonstration aB.16) not being sufficient with

erature. For an open tnmaterlgl plate with bonded 'nterfacﬁﬁmogeneous boundary conditions, we consider the interface
and stress-f_ree/ clamped exterior edge_&;-A-I, I-A-A-Il, O crack (Fig. 6a) with crack flanks perfectly bonded together.
II-A-A-Il), Ying and Katz[52] derives eigenvalue equations—y,,; js Conditions A hold both ahead of and in back of the
An eigenvalue equation for the first of these configurationérack.. tip. The determinant for this case is given in equa-

(I-A-A-1) is given in terms of pairs of Dundurs parameters iﬂon (25), Bogy and Wang71]. In terms of the eigenvalue,
Koguchi, Inoue, and Yadgb7], as are some resulting singU+pis has

lar eigenvalues. Further singular eigenvalues from the same
equation are presented in Inoue and KogieBj. Additional D=—(1-8%2?si* A= (3.17)

singular eigenvalues are given in Pageau, Joseph, and Big- - - .
gers[73], together with some singular eigenvalues for tk%?earlyD of (3.17 satisfies(3.19. The coefficient matri#\

closed and bonded trimaterial plai&-A-A). The nature of Which leads taD can be assembled frod.1) on applying

. ; . | . : onditions A ond=0,7. Checking the rank of this matrix
associated singular eigenfunctions for I-A-A-I is considere . .
in Pageau et 4104] reveals that it drops to four when=1. Thus(1.3) requires
; - . that the first four derivatives @ be zero whem=1. TheD
In closing, we comment on the one remaining set of Indf (3.17 has just its first three derivatives being zero when
terface conditions in Table 8, Conditions E. With these adhe- " J . oo 9 .
. . : : =1. Consequently, no log singularity is possible for this
sive stress-separation laws instead of the classical perfectly- ;. : . . g
o . . configuration despite the fact th@&.16 is met. This is what
bonded conditions, some reduction in the occurrence © . . )

. o L one would expect because this configuration has two per-
stress singularities is to be expected. This is indicated via . . ST
N . . : . fectly bonded half-planes with no discontinuities in either
limiting cases with single-material plates. However, this i

yet to be formally established in general. goundary geometry or boundary conditions.

As a second demonstration (§.16) not being sufficient,
. o o ) we consider the interface cra€kig. 6a), but now with the
3.3 Log singularities identified in the literature crack flanks in frictionless contact. The determinant for this
Here we review contributions to the literature that have asenfiguration is given as equati¢®4), Comninou[65]. This
ymptotically established the possibility of logarithmic termgquation has a multiplicative factor which cannot be zero
in stress singularities foN-material plates under in-planeremoved, and otherwise is
loading. We start with when such singularities can occur with i
homogeneous boundary conditions, then consider their oc-D=sin* A7 cosn 7 (3.18)

currence with inhomogeneous boundary conditions. We f@learly D of (3.18 satisfies(3.16. However, checking the
cus on bimaterial plates and follow the same order of geomynk of the corresponding coefficient matrix reveals it drops
etries as previously in Section 3.2. to five when\ = 1. Thus(1.3) requires the first three deriva-
Before beginning this review, we recap the requiremen{ges of D to be zero whem =1. TheD of (3.18 has only
for logarithmic participation in bimaterial plates becausge first two of its derivatives zero when= 1. Consequently,
these continue to be incorrectly stated/applied in the litergg log singularity is possible for this configuration despite
ture. Forhomogeneous boundary conditioas in Table 1, he fact that(3.16) is met. This absence of logarithmic stress

conditions for logarithmic intensification of power singularisingularities is consistent with the results in Table 5 for the
ties are as in the second @f.3) with n,=8 for bimaterials. g |imiting cases 0f3.6) and (3.7).

For the case of pure logarithmic singularities, conditions are aos a third and final demonstration @8.16 not being
as in the penultimate of1.3) with na=8. Forinhomoge- gyfficient, we consider a crack terminating normal to an in-
neous boundary conditionas in Table 6, conditions for aterface (Fig. 6o with I-A-A-l). The determinant in this in-
log-squared singularity are as in the first(af5) for na=8.  stance may be obtained from Dempsey and Sing&df as
For the case of pure logarithmic singularities, conditions are _ ) )
as in the last two of1.5) for ny=8. Throughout these con- D =sil? @[ a+ %~ 2\*(a—B)(1-B)
ditions for bimaterials, corresponding inequalities &srand 2 2
. . ! +(1—pB°)cosn 3.19

‘Cs are to hold on at least o, (i=1,2), while equations (1=59 7] ( )
for €s are to hold on both. ClearlyD of (3.19 complies with(3.16). This leads Koguchi

For a pure logarithmic singularity, conditions other thaet al [57] to conclude that log singularities are possible for
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any values ofa and 8. However, checking the rank of the P1
coefficient matrix reveals that it drops to ten. Because this _)'
bimaterial is a degenerate trimateria & 12), this means _C”.) R
that the first two derivatives dd must be zero ak=1 for I
a log singularity in(1.3). The D of (3.19 has only its first __"1
derivative zero at\=1. Consequently, no log singularity _"1/“2 Vg
is possible here. This absence of logarithmic stress singulari- 7’1
ties is consistent with results in Table 5 for limiting
cases?® pe
Demonstrations 0f3.16) not being necessary for log sin- Fig. 8 Bultt joint subjected to uniform tractions

gularities with inhomogeneous boundary conditions abound.
They can be found in Table 7 as limiting cases.

In the I|terature,(3.:.L.® is typically gsed W'th ,homo,ge' _ Of course there have to be many more instances of pure
neous boundary conditions. The configurations identified jggarithmic singularities than this for bimaterials. This is ap-
this way may admit the possibility of a log singularity, ofarent from limiting cases. For example, for the kinked crack
they may not. The other requirements ((h.3) need to be (Fig. 6a’) with stress-free flankél-A-1), the limits in (3.6)
further checked to decide. Absent such checks, the situatigid (3.7) lead to I-Il and I-1, respectively, for a plate of one
remains ambiguous in this regard and, accordingly, we onpitaterial. Then Table 5, for | or VI-II, shows there is a log
configurations so identified in the review that follows. As aingularity for the first of these limitéhe actual vertex angle
result, to date in the literature the number of bimaterial plat@svolved is ¢=101.2° whernx=2.85). Other configurations
identified as having pure logarithmic singularities is fewewith pure logarithmic singularities for limiting cases are: Fig.
than that for plates comprised of a single material. In fac’ with I-A-ll, lI-A-ll, I-B-I, A-A, A-B, A-D, B-B, B-C,
one would expect the opposite to be the case given the ex@&#, and D-D; Fig. &' with I-A-A-I, B-A-A, and I-B-B-I;
parameters available with bimaterials. This probably meaf8d Fig. &', b, andc with I-A-I and I-B-I.

that there are a significant number of bimaterials which do FOr pure logarithmic singularitieswith inhomogeneous

have log singularities that are, as yet, not identified explicitifoundary conditionsBogy [85] provides an example for the
utt joint subjected to tractions. Asymptotically at the joint,

We begin with instances dégarithmic intensificatiorof X T R .

: . .the configuration is as in Fig. 8 wherep and q; are the
power singularities undehomogeneous boundary condi- . : o
tions Quite a variety of such instances are identified i(riOnStant pressure and uniform §hear t_rac'tlon on matfial

) o =1,2). In Bogy[85], a pure log singularity is found to result

Dempsey[33]. Typically they occur at transitions from com-;
plex to real eigenvalue&f, Section 2.3 For the traditional
conditions for perfect bonding on the interface while outer
edges are stress fréeA-l), the following bimaterial geom-
etries are determined as having the possibility of power-
logarithmic stress singularities in DempsE38]: Figs. &’ d:1#4d> (3.20)
andb’, and Figs. @, b, andc. Other instances are identified
for closed bimaterial plates. These are for perfect bondimg addition, a pure log singularity is found to result if
(A-A) and the geometry of Fig.a6, and for frictional contact
with perfect bondingB-A-A) and the geometry of Fig.kb. a=2B+0
The last is really a degenerate trimaterial.

Turning to pure logarithmic singularitieswith homoge-
neous boundary conditionthere are few instances identifie
in the literature wherein(1.3) is known to be satisfied for
bimaterials. Two such are for two sets of specifications féromplete stress fields corresponding320 and(3.21) are
the oblique butt joint(Fig. 7a’) with stress-free conditions given in equations4.6) and(4.7), Bogy [85].

(I-A-1) which are given in Chef96]. Some further instances ~ 1he configurations admitted b8.21) include ones with

are given in Dempse33] for the following configurations: continuous tractions across the joint. Here, then, the singu-
Fig. 62’ with A-A, and Fig. &' with I-A-l. Additionalin- larity is associated with the discontinuity in material moduli.

Generally this added material discontinuity increases the oc-
currence of stress singularities over that for a plate made of a
single material. However, this does not always have to be so.
T of (249 X — f | values afand For the limited cases ofr=1 andB=3% or a=—1 andp

For D of (3.19, A=1 can be a root of multiplicity 3 for special values @fand 3: __1 f f : : .

Further checking of these special cases reveals that they too do not have log singulari- 2 there is no _lOQ SmQUIarIW a_ssomatgd with a_ step ghe_ar.
ties. Here, then, the singularity associated with the discontinuity
19The thrust of Dempsef33] is to gain an appreciation of when power-logarithmicin the applied shear traction is being offset by that associated

singularities occur. Hence pure log singularities are not explicitly identified and can’, X T i X
only be inferred as limits in this paper. with the discontinuity in material moduli.

a=0 or a=2B#*1

g PItp3#0, pi(l+a)#py(l-a) (3.21)

stances may be inferred from Dempg&g] for the configu-
ration of Fig. &' with B-A-A.*°
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The pure logarithmic singularities associated wi#20 tions with pure log singularities for limiting cases are:
and (3.21) both occur whem=1 is a repeated root of the|’-IC-I, I'-IC-ll, |'-IC-V, Il'-IC-ll, II'-1C-V, V’-IC-V,
eigenvalue equation an@.16 is indeed satisfied for thesewhere IC denotes interface conditions A, B, C, or D,th@
instances. So how is this consistent with the conditions ghme set minus C. S|m||ar|y' other ||m|t|ng cases of |Og sin-

(1.5 for a log singularity with inhomogeneous boundaryjarities can be identified for further geometries in Fig. 6
conditions? For that matter, because any configuration with 4 Fig. 7.

inhomogeneous boundary conditions can also include the re-

sponse with corresponding homogeneous boundary congi-Fina”y’ for log-squared singularitiesvith inhomogeneous
tions, how is it consistent with the conditions (f.3) for a oundary conditionstwo instances are identified for the ob-

log singularity with homogeneous boundary conditions? /ldué butt joint(Fig. 7a') in Chen[96]. Quite a number of

Answering the second question first, we consider0 other instances can be |d.ent|f|ed as limiting cases corre-
and@=28 in turn. Fora=0, assembling reveals that its SPONding to(3.6) and (3.7) via Tables 5 and Tsee the dis-
rank is seven. Hence the first part of the conditiongli® cussion at the end of Section 2.4
for a log singularity is actually satisfied. However, assem-
bling associated fields reveals titat €,, and¢; of (1.2) are 4 STRESS SINGULARITIES FOR OUT-OF-PLANE
all zero. Thereford1.3) has that there is no log singularityl OADING
for homogeneous boundary conditions wher 0. For « )
=2, the rank ofA drops to six. Therf1.3) requires that, in 4..1 Out—of-plane shear of an elastic wedge made of a
addition to(3.16 being met,d?D/\%=0. This is not the Single material
case for theD here. Thereforgl.3) has that there is no log Here we follow the order of presentation in Section 2 for
singularity for homogeneous boundary conditions when in-plane loading when we treat out-of-plane shear of single
=2p. Thus there is no pure logarithmic singularity whatsamaterial wedges. Thus we begin by considering a wedge
ever for this configuration with homogeneous boundary connder homogeneous boundary conditions, then we consider
ditions. The fields given in Bog85] in equationg4.6) and inhomogeneous boundary conditions.

(4.7) are consistent with this conclusion. The elastic wedge of interest can be framed with cylindri-

Answering the first question second, we consit®20 cal polar coordinates, 6, andz with origin O (Fig. 9). It has
and(3.27) in turn. For(3.20), we find that it is an instance of indefinite extent in the andz directions while subtending an
compliance with the second ¢£.5). Then since , can equal angle ¢ at its vertex. The only existing displacement enter-
ny—1 (for =0), (3.16 can be satisfied too. F¢8.21), we tained is in thez directionu,. This displacement is taken to
find that it is an instance of compliance with the lastbf). be independent of. Consequently field equations hold on
Then, sinca ,=n,— 2, (3.16 can be satisfied too. The fieldsthe 2D regiortr of (2.1). With these geometric preliminaries
given in Bogy[85] are again consistent with these concluin place, we can formulate the class of out-of-plane shear
sions. problems of initial interest as next.

With respect to inhomogeneous boundary conditions, the In general, we seek the out-of-plane shear stregseand
response of the butt joint is analogous to that of a plate witty,, and their companion out-of-plane displacemept as
uniform shear tractions. For this last, as the plate vertéxnctions ofr and 6 throughout®R, satisfying: thestress
angle varies, regular solutions witld stresses break down.equation of equilibriunin the absence of body forces,

This results in their requiring auxiliary fields for the vertex
angle with the breakdown. This in turn leads to a logarithmic — 4 — =
stress singularity for this angle. A transition between the two rorae
types of solutions can be achieved by suitably supplementiog 23; the stress-displacement relatiorfer a linear elastic
the regularr® stresses for inhomogeneous boundary condiredge which is both homogeneous and isotropic,

tions with stresses for corresponding homogeneous boundary
conditions. In effect, this is the approach developed in
Dempsey39] and Ting[44]. For the butt joint, the only real
difference is that material moduli are varying instead of a
vertex angle: Otherwise the same evolution occurs.

Apparently only two further instances of pure logarithmic
singularities for bimaterials with inhomogeneous boundary
conditions are identified in the open literature. These are for
the oblique butt joint(Fig. 7a’) and may be found in Chen
[96]. Of course, there have to be many more instances of log
singularities for bimaterials with inhomogeneous boundary
conditions than the total reported here. Again, this is appar-
ent from limiting cases. For the kinked cragkig. 6a’) with
tractions applied to its flanks ‘dA-1"), the limits in (3.6) 0 \
and (3.7) lead to I—Il and I'—1, respectively, for a single
material plate. Then Table 7 has logarithmic stress singulari-
ties for both limiting cases. Other kinked crack configura- Fig. 9 Geometry and coordinates for the elastic wedge

0Tz Tz 1079,

(4.2)

Elastic wedge
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Table 9. Boundary conditions for out-of-plane shear . c c
h=nrr 2 T bsinng+{ 2 fcosh g
Identifying Boundary Physical Toz =AT —C, sin (o)
Roman numeral condition description (4.4)
A

ls =0 Stress free r .
N 6370 Clamped u,=—(Cq SiN\ 6+ C, COS\ )
I To2= KU, Cohesive stress-separation law M
15 7= Uniform shear We are now in a position to discuss further the complete-
I’ U,=rAdgg Linear displacement . . . . .

s ness of fields complying witti4.3). Giventhat u, does in-
deed admit to representation by combinations of functions
which are separable in and 6, the completeness of such
functions complying with4.3) can be argued as follows. At

= 4, e U, 4.2) the outset we draw on Sturm-Liouville theory to establish the
e B T g ’ completeness of the fields i{@#.4) for homogeneoubound-

on R, whereinu continues as the shear modulus; any one

the first three admissibleomogeneous boundary condition

ary conditions when is real?®° Then we observe that,, or
can equally well be represented on a circular arc by series
frt)m (4.4) with either\ never negative ok never positive.

in Table 9 (identified as 4, Il,, and Il therein on the As a result, we must have a complete representation just for
wedge face a?#= 0, together with another such condition or: Never negative. Hence we must have a complete represen-

the wedge face at= ¢, for 0<r<o; and theregularity
requirementat the wedge vertex

u,=0(1) asr—0

on 9. In particular, we are interested in the local behavior of gjn)\ =0

tation with bounded displacements, provided these displace-
ments are separable.

Eigenvalue equationare obtained on introducing the
fields of (4.4) into pairs of homogeneous boundary condi-
tions drawn from Table 9. This leads to, foonmixed prob-
lems(lg or lllg—Ig or lllg, Hg—Ilg),

(4.5)

the fields complying with the foregoing in the vicinity of the

wedge vertexO.

Several comments on the preceding are in order. The out-cos\ ¢=0
of-plane displacement admitted with its shear stressesEiauation(4 5) for I—
" S

sometimes termed a state afitiplane shearThis state is

and formixed problemglg or Illg—1ly),
(4.6)

Is has an associated torsion problem
which is analyzed in Saint-Venaf@8]. This problem is an-

physically representative of the response at cracks and Otﬂg)r/mmetric about the wedge bisector so that only the anti-

geometric features under Mode Ill loading. The displaceme,

u, is also physically representative of thwrping produced

é}}mmetric contribution ta4.5) is involved (viz, cosA¢/2
=0). However, this is the part d#.5 which leads to sin-

when noncircular prismatic bars are subjected to torque. éﬂlar eigenvalues. Moreover, given that the torsion problem

this role, it complements the, displacement component f0r|
S

pure torsion(see, eg, Ch 10, Timoshenko and Good#)).

—Is can be solved via the warping displacem@déumann
problem) or via a stress functioriPoisson’s equation with

The homogeneouboundary conditionf Table 9 have pyjjcpiet conditions, this equation also holds for I, .

in-plane counterparts in Table 1 in accordance with: | for |

Il for Il g, and VI for lllg. It is possible as well to interprej |

as the analogue of Ill, andslls the analogue of IV. If the
S

stiffnessk in 1l is let to tend to zerolis recovered, while
if it is let to tend to infinity, 1k is recovered. Otherwisk is
positive on#=0, negative org= ¢.

As in Section 2.1, there are nmnditions at infinityor

Equation(4.6) for Is—1l5 can also be viewed as for a torsion
problem if a vertex angle of @ is taken. Equatiori4.6) for
—Illg is explicitly obtained as a limiting case for a bimaterial
wedge in Aksentiarf90]. The equivalence of lllwith I as
far as both eigenvalue equations are concerned is argued in
Sinclair[99].

In accordance with(4.3), the range of eigenvalues for

length spalepreg,ent in the_ fo_rmulation..For .the reasons a%fdmissible power singularities of the form @4) is as pre-
vanced in Section 2.1, this is appropriate in an asymptoig, ;v (ie, 0<\<1). Such singular eigenvalues can be de-
treatment. Further, regarding thegularity requirement o minaq in closed form for the elementary transcendental

(4'3.)’ we remarl_< that this can be included provided the rPe'quations represented 4.5 and (4.6). Reintroducing the
sulting formulation can be shown to be complete. We CO@Tngularity exponenty=1—\, we thus have the following

sider this completeness issue further once we have CorfGinissihie power singularities: for nonmixed problems,
sponding basic fields established. Given completeness, the

singular fields admitted bg4.3) have unbounded stresses yet ™
bounded displacements. ¢
Analysis is straightforward and parallels that outlined i34 tor mixed problems,
Section 1. Indeed, it is simpler than that in Section 1 because
the problem at hand is harmonic rather than biharmonic. To _ _
see this, substitutét.2) into (4.1). This showsu, to be har-
monic. Therefore it admits to separation of variables. This
leads to, as oubasic fields for out-of-plane shear 2See, eg, Ch V, Courant and Hilbé7].

=1-—(m<¢p<2m) 4.7)

r

v
3
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1.0 Table 10. Single material configurations in out-of-plane shear with
. 1 1 T T 1T T T T T 1 logarithmic singularities

r
L T=0(r") asr>0 | Boundary conditions
,‘ on 6=0,¢ Configuration specifications
0.8 /0 — 12 or Nig=Ig ¢=m, 2w, q#0

=1l p=m, 2w, Aps#0
eI p=2m
1L or =11, ¢=ml2, 3w2, g#0, Ads#0

Mixed conditions

o
o
I

Nonmixed conditions

are no repeated roots. Hene3) (with ny=2 therein has
that there are no singularities other than those of Fig. 10 with
homogeneous boundary conditions.

This need not be the case fathomogeneous boundary
conditions For uniform tractions/linear displacements, loga-
rithmic stress singularities are possibleThe specific inho-
mogeneous boundary conditions considered to this end are
included in Table 9, distinguished by primes. Hergircon-
tinues as a constant shear traction for While A ¢ is the
out-of-plane angle rotated through by IIFor these condi-
tions, use of the basic fields ¢4.4) leads to systems which,
Vertex angle, ¢ in general, cannot be solved whan=1 is an eigenvalue.

hus we need auxiliary fields. These follow fro@.4) on

ifferentiating with respect ta. For the stress component,
this leads to, as an example of auxiliary fields for out-of-
plane shear

T,= (14N Inr) (& SinN\ O+, COS\ 6)

Singularity exponent, y
=]
.
T

02 -

0.0 LI
0 90° 180° 270° 360°

Fig. 10 Singularity exponents in out-of-plane shear for varyin
wedge angles

37 (37
(—< ¢S27T> (4.8)

2 +\0(&, COSA §— &, SiNNO)] (4.9)

In (4.9), carets atop constants continue to indicate they do
The singularity exponents d#.7) and (4.8) are plotted in not have to be the same as #.4). Using the full fields
Fig. 10 whereinr denotes either shear. associated witlt4.9), in conjunction with those of4.4), then

For nonmixed problems, stress singularities are only asnables solution. Hence a log singularity far=1 (see
sociated with reentrant corners. For prismatic bars under t4:9)). This occurs when the last ¢i.5 holds forn,=2.
sion, this is recognized in Section 710, Thomson and Tajfiow, though, the conditions on the constants within auxiliary
[100], and in Saint-Venarjtl01]. For ¢=360° with free-free fields can be dispensed with. This is because a logarithmic
conditions, the nonmixed curve of Fig. 10 recovers thétress singularity attends any nontrivialin the auxiliary
inverse-square-root singularity of a traditional stress-frélds for out-of-plane sheasee(4.9)). Configurations that
crack under Mode IlI loading. The associated eigenfunctiafo comply with the foregoing requirements and thereby do
is given in Irwin and Kies[102]. For ¢=270°, the non- have log singularities are given in Table 0.
mixed curve produces the singularity as for a keyway in a In Table 10, the logarithmic stress singularity on a half-
shaft transmitting torque. For other vertex angles, the curgiane with [—I; or II,-1l can be anticipated from the
for nonmixed problems in Fig. 10 is similar in character tasymptotic analysis in Wasofi03]. For I.—Is and both¢
the upper curves in Fig.awhich are for corresponding non-= 7 and ¢ =2, these log singularities are fully developed
mixed problems with in-plane loading. in Ting [104], together with a reasonable transition for vary-

For mixed problems, a broader range of vertex angl@sgy vertex angles through and 2r effected by means of the
leads to stress singularitiésig. 10. This is similar to the approach of Ting44]. For other configurations in Table 10,
corresponding situation with in-plane loadiffgig. 2acf 2d). a similar analysis may be found in Sincl4it05]. For the
Furthermore, the general character of the mixed curves witibst part, 11 is equivalent to] in Table 10 because it can
out-of-plane sheaFig. 10 is quite similar to those foy for  produce a uniform shear in response to a rigid body transla-
k=2 with in-plane loadingFig. 2d).

In Iight of the preceding discussion regarding Complethection 2.4, it is possible for nonsingular inhomogeneous displacements to
ness, it would seem to be unlikely for there to be anythingoduce other than logarithmic singularities, egx ¥ Further, if these singularities
other than real power singularities for out-of-plane shear of gl pa'i Shee for Saresorting romogeneaus boundary condiions, fhey could
wedge under homogeneous boundary conditions. This expéme full fields for Eq.(4.9) do give rise to a logarithmic displacement field associated
tation is in fact met by the eigenvalue equatidnss) and i hemogencous boundary condion. T eccurslon) e, 0 andcs 1o
(4.6). Separating real and imaginary parts in these equatiofshat stress-free conditions are obeyed by this stress field for any vertexdangle
reveals that there are no complex eigenvalues. In additidigwever. the associated logarithmic displacement field is not in compliancé4wh

K o i R S0 that our original statement concerning the absence of logarithmic terms with homo-
differentiating these equations with respechtreveals there geneous boundary conditions still holds.
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Table 11. Interface conditions for out-of-plane shear As in Section 4.1, the preceding formulation is absent
Identifying Matched Additional Physical conditions at infinity and insists on bounded displacements.
letter quantities - conditions description The basic reasons for these two aspects remain the same. The
A Tozs Uy Perfectly bonded limited completeness argument advanced in Section 4.1 can
gz o szoo ?ﬂﬂ'?g'ﬁ?gﬁg}gﬁt be extended to composite configurations with interface con-
Es Tor r=k(u —u;) Adhesive stress-separation lawditions A, Bg, or Ds: for these conditions, composite con-

figurations are merely equivalent to multiple regular Sturm-
Liouville problems.

orf-onditions A have received by far the most attention in
the literature. Accordingly, we focus attention on these tradi-
tional conditions for a perfectly bonded interface next. We
4.2 Out-of-plane shear of an elastic wedge made of mul- comment briefly on the nature of results for other interface
tiple materials conditions at the end of the section.

We begin our review of perfectly bonded wedges made of
ltiple materials by consideringimaterials Analysis for

tion. Under these circumstances, the requirements placed
g for I apply to the uniform shear within Yl

In this section we consider extension of the treatment in the
preceding section to wedges made of multiple materials. We ) ) X
first formulate this extended class of problems. Thereafter S clasg O,f composite wedge is stra|ghtforvya-rd and com-
review contributions to the literature which identify attendarﬁaCt' This is because the order of the coefficient matrices

stress singularities under homogeneous boundary conditio'Hé’plved is only four(cf 8 for most in-plane bimateriaisand

We then discuss the further singularities possible with inhg;genvalue equations depend on a single material parameter.
mogeneous boundary conditions. He
To begin, we continue to use cylindrical polar coordi-
natesy, 6, andz with origin O to describe the entire wedge
of interest with its complete vertex angte Now, though,
the wedge is comprised & prismatic subwedges with ver-
tex anglesg;, i=1,2,...N. Each of these subwedges is oberves as this single material constant.
indefinite extent in both the andz directions. We also con-  Eigenvalue equationgor bimaterial wedges in out-of-
tinue to entertain displacement in thalirection alone, with plane shear are available in the literature as follows. For the
this displacement being independent of Consequently, open bimaterial wedge and Conditions-IAs—Ig, Ils—Ag
field equations hold on the 2D regidi of (3.1) (Fig. 4. —Ilg, and L—A.— Il eigenvalue equations are obtained in
With these geometric preliminaries in place, we can formutksentian[90]. The first two of these equations are con-
late the class of out-of-plane shear problems of initial interefitmed both in Rad48] and in Sinclaif99]. The last eigen-
as next. value equation forg—Ag— Il is confirmed both in Sinclair
In general, we seek the out-of-plane shear stregsesnd [99] and in Ma and Houf106]. For a crack terminating at an
T4, and their companion out-of-plane displacementas interface(Fig. 6b’) and Conditions J~A;—A,— I, an ei-
functions ofr and 6 throughoutR, satisfying: the appropri- genvalue equation is given in Fenn@0]. For the closed
atefield equation®f elasticity;interface condition®n inter- bimaterial wedge and Conditions;AAg, an eigenvalue
nal wedge facedyoundary conditionsn external faces if the equation is given in Sinclair99]. This eigenvalue equation
wedge is open§<2i), or further interface conditions if it in confirmed in Pageaat al [73].
is closed @p=2); and aregularity requirementat the Eigenvaluesfor the dominant power singularity forg |
wedge vertex. The field equations hold 84 of (3.2, i —As—Ig are given in a compact graphical form in R3]
=1,2,...N, and are given by4.1) and(4.2), with x in the for any values of¢, and ¢,, but for a somewhat limited
latter being replaced by, the shear modulus of the materange ofu. Eigenvalues for a more extensive rangeuolbut
rial comprisingfR; . The admissible interface conditions ardimited values of¢, and ¢, are given in Sinclaif99]: The
listed in Table 11 and hold ord=#6; of (3.2, with i ¢; and ¢, treated therein correspond to the geometries in
=1,2,...N—1 if the wedge is openj=0,1,...N if the Fig. 6a, a’, and Fig. 7. Secondary power singularities are
wedge is closediE& 0 andN are for but one set of interfacealso given in Sinclaif99].
conditions. The admissible boundary conditions continue to There is a certain duality betweeR—A,—Is and Il
be as in Table 9 and hold of=0, ¢ if the wedge is open. —A,— Il which enables singular eigenvalues for the latter to
And the regularity requirement is the same(4s), but now be directly obtained from eigenvalues for the former. Specifi-
holds onf®;, i=1,2,...N. cally this is done by entering graphs of eigenvalues for |
The interface conditions of Table 11 have in-plane coun- A— I with the trueu replaced by It (see Sinclaif99]
terparts in Table 8 as follows: A for A B, for Bg, D for Dg,  for further explanation For both types of configuration, the
and E for E. There is no counterpart to Conditions C ofliscontinuity of an abrupt change in shear modulus attending
Table 8 in out-of-plane shear. In Conditiong,Ek is the Conditions A means it is no longer necessary to have a
stiffness in the adhesive stress-separation lamgndndu,  reentrant corner for singular stresses to be possible.
are defined analogously tg, of (3.3). In reality, Conditions Singular eigenvalues fog+ As— Il and geometries as in
A, for perfect bonding are just a simplification of Conditiongig. 6a, a’, and Fig. 7 are given in Sinclaj®9]. Some fur-
E obtained on lettink tend to infinity. ther eigenvalues fors+Ag—1lg are provided in Ma and

w=palpy (4.10)



Appl Mech Rev vol 57, no 5, September 2004

Table 12.

rithmic singularities

Bimaterial configurations in out-of-plane shear with loga-

Boundary con
on 6=0,¢

ditions

Configuration specifications

r ’
Ig or lllg—Ig or Il

’ ’
=

’ !
12 or Illg=11;

1= ¢o=7, Q1 Fdy
b1=do=7I2, Q1 F — pudy__
h1=m712, p,=37/2, q;# ud;,
pm=—Ccot¢, tan¢,, q, COS¢,#0, COShy
1=¢1=m, Ap1#A ¢,
1= Go= 72, A1 7+ — A ¢y
G1=112, p,=3m/2, p1A by # oAby ]
u=—tang, cot ¢y, uA p4 Sin d,# —A¢h, sin ¢,
Pr=T, dp=7/2, U1 # uA b,
G1=712, po=m, A1 7 p1A ¢,
L= COt by COt by, Oy SIN 7 — A, COShy
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can act like | by virtue of uniform shears being induced in
response to a rigid body translation. In this role, restrictions
onq; andq, in Table 12 then apply to the uniform shears so
induced.

By way of examples of the logarithmic stress singularities
of Table 12, Fig. 11 illustrates,+As—1; for a half-space
and for a bimaterial wedge with vertex angles of 30° and
120°. For the first(Fig. 11a), Table 12 hasu=1 andq;

# —(Q, when ¢+ ¢,= . Hence there is no material dis-
continuity. Here, then, the discontinuity in the shear traction
by itself has an associated log singulafityis is the configu-
ration analyzed in Ting104]). For the secondFig. 11b),
Table 12 hasu=3 and q,;# —3'g, when ¢,;=30° and
$»,=120°. Hence we can takg;=—q andqg,=q so that

Hour [106], which also furnishes associated eigenfunctioﬁgere is no discontinuity in the shear traction. Here, then, the
for all three types of configurationg+As—Ilg, Illg—Ag
—Ilg, and L—Ag—ls.
Singular eigenvalues for the crack terminating at an integorner present for a log singularity with either of these dis-
face with L—A,—As— | are given in Fenndi80] for a wide ~continuities.
range ofu and all angles of incidence.
Singular eigenvalues for A& A are given in Sinclair plane shear available in the literature. The simplest degener-
[99]. Some further eigenvalues for,AA, are provided in ate trimaterial treated is a stress-free crack in one material
Pageau et dI73], together with the associated eigenfunctiorierminating normal to an interface with a second material
In view of the discussion of completeness, it would seefths—As— As—Is and a cross section as in Figo)6 Singular
to be unlikely for there to be anything other than real poweigenvalues are determined in closed form in Barfa8].
singularities for out-of-plane shear of a bimaterial wedge uthese eigenvalues are confirmed in Fenig®]. When the
der homogeneous boundary conditions. That this is the c&sack is other than perpendicular to the interfacg-(@
is confirmed in Sinclaif99]. Further, there is no logarithmic —As—Is and Fig. &’), the eigenvalue equation for this de-
participation under homogeneous boundary conditigrmsd  generate trimaterial is given in Sendeckgp9]. This equa-

Il (ibid).

discontinuity in material moduli by itself has an associated
log singularity. Notice, too, that there need not be a reentrant

There are a few analyses wimaterial wedgesn out-of-

tion is confirmed in Fenn€l80] which also furnishes some

Again, this absence of other singularities need not be te#gular eigenvalues. True trimaterial wedges with cross sec-
case forinhomogeneous boundary conditiod®or the uni- tions as in Fig. 6 and either stress-free crack flanks (I
form traction/linear displacement conditions of Table 9, loga= As—As—Is) or bonded ones (& A;—A) are analyzed
rithmic stress singularities are possible. Following basicalip Pageauet al [110]. This reference provides eigenvalue
the same steps as in Section 4.1, Sincla®7] identifies equations, singular eigenvalues, and accompanying eigen-
instances of such log singularities. These we present in Tafilctions. A further true trimaterial wedge with each con-

12.

In Table 12 it is understood that; and ¢, are required to

be such that positive shear moduli are involved with

O<u<w

(4.11)

Further in Table 12q, is g andA ¢4 is A ¢s onR,, while g,
is g andA ¢, is A ¢s onR,. As previously, Conditions I

iz

o

Elastic half-space

(@

Elastic
bimaterial

stituent single-material wedge having a vertex angle of 90°
and with outside stress-free faceg{IA;—As—Is) is ana-
lyzed in Keer and Freemdd11]. This reference provides the
eigenvalue equation.

In closing, we comment on the other interface conditions
in Table 11. We observe that Conditiong &d I act like
the boundary conditionsg bnd Ik of Table 9. Consequently,
bimaterials with these interface conditions simply have the
same singular character as two single-material wedges. For
Conditions E, some reduction in singular stresses over that
for Ag is to be expected. This is indicated via limiting cases
with single-material wedges. However, this is yet to be for-
mally established in general.

4.3 Out-of-plane bending: Classical theory

Here we consider the singularities that can occur in the out-
of-plane bending of an elastic plate when treated within clas-
sical fourth-order theory. We follow the same order of pre-

sentation as previously. Thus we first treat plates made of a

Fig. 11 Examples of wedges with logarithmic stress singularitie§ing|e_ material under homqgeneous boundary conditions,
a) half-space with discontinuous shear tractibnbimaterial wedge then inhomogeneous conditions, then plates made of mul-
with continuous shear traction tiple materials under these two types of conditions in turn.
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Table 13. Boundary conditions for out-of-plane bending with classical

’:' theory
/,/“\ Identifying Boundary Physical
z P N ] Roman numeral conditions description
- Elastic plate\.
vl ///\\\ ™. | HM,H st f
e L N \, b M;=0, Q= — == ress free
// /// \\\ \\ au
- iy ~ \ Iy, u=0 —*=p0 Clamped
s NN z a0
A h NN u
o Z -9 } NN My, &_ﬂz:o, Q,=0 Symmetry
,/ /T7 AN IVy u,=0, Ms=0 Simply supported
7 | [l 0 # (1,
Vp Mg=k[? T8/ Elastically restrained
Fig. 12 Geometry and coordinates for the angular elastic plate in M,  Fu
. r r4
bending Qo =k gm
Iy My=Mo+M/r, Applied moment/shear
. . My
The angular elastic plate to be bent can be framed with Q5 =Vo

cylindrical polar coordinates, 6, andz with origin O at the

’

au.
—11.r3 Z _ /3
U,=Upl”, =Ugr
4 0 96 0

Applied displacement/
rotation

vertex of the mid-plane of the plat€ig. 12. It has indefinite °
extent in ther direction, thickness  in the z direction, and Vs
subtends an anglé at its vertex. The displacement of pri-
mary concern is that in thedirectionu,. This displacement
has associated moment resultakts, M,, andM,, shown
acting in a positive sense in Fig. d,3and shear resultang;
andQ, shown likewise in Fig. 18. All of these field quan-
tities are taken to be independent of Consequently, field
equations hold on the 2D regidR of (2.1) and (3.1) for
single-material and multiple-material plates, respectively.
With these preliminaries in place, we can formulate the out-
of-plane bending problems of initial interest as next.

Applied moment/

My=Mo+Mgr, u,=0gr® A
displacement

onR; theresultant-displacement relatiorier a linear elastic
plate which is both homogeneous and isotropic,

M, v, |t d%u,
M, =" Mp 1 Veu, _ (l_v)W

In general, we seek the out-of-plane displacemgntand d (1 du,
its associated resultantd,, M,, M,,, Q,, andQ,, as Mr(’:“b(l_v)&_r(F ﬁ) (4.13)
functions ofr and @ throughout® of (2.1), satisfying: the
equations of equilibriunmin the absence of body forces and P
loading on the plate faces at *h, 0 o

J p) { r] =~ o (V2uy)

2o+ 22— Qs Lo

r oo
M, 1oM,, M,—M,
o 1 90 Q=0 (4.12) on R, wherein u,=41h%3(1—-v) is the flexural rigidity

and V? the Laplacian operator in and @ coordinates; any

1M, M,y 2M,y one of the first five sets of admissiddeundary conditionin

ro96 ar r —Qy=0 Table 13(identified as |-V, therein on the plate edge at
=0, together with another such set on the edgé=at) or
the bisector ab= ¢/2 as appropriate, forQr<o; and the
" M,q regularity requirementt the plate vertex,
or

u,=0(r) asr—0 (4.14)
onfR. In particular, we are interested in the local behavior of
the fields complying with the foregoing in the vicinity of the
plate vertexO.

Several comments on the preceding formulation are in
order. When the plate hdateral loadingon aface the right-
hand side of the first 0f4.12) is no longer zero. Provided

@) ®) this lateral loading is continuous or, if singular, has inte-
Fig. 13 Stress resultants on plate elemeaispositive moment 9rable singularities, it in itself does not produce singularities
resultantgelement viewed fronz=h face), b) positive shear result- in any of the resultants.
ants The resultants are related to tegessesn the plate by

Mre Mo, =—M,q
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M, . oy N biharmonic. Hence we can simply use the biharmonic Airy
M, :f oy zdz {Qr] :f [ TrZ] dz stress function used to generatel) (from Williams [2]) as
M,, - =7, Qo ~h | Toz the displacement in bendir@s in Williams[115]). Thus we
(4.15) obtain, as oubasic displacement solution for classical bend-

. . . . _ing theory
These relations are consistent with the sign conventions

shown in Fig. 13. Assuming-,, o, andr,, to be linear in u,=r**IA(N, 6)
z, it is possible to invert the first d#.15). Likewise, assum- (4.16)
ing 7,, and 7y, to be parabolic irz and zero az=*h, itis AN, @)=cicogN+1)f+cCosin(A+1)6
possible to invert the second ¢4.15. It follows that any
singularity in the moment resultant4, , M ,, andM,, gives
rise to the same singularity in the stresses o, andr,,,
respectively, while any singularity in the shear resultats
andQ, gives rise to the same singularity in the shear stres
7., and 1,,, respectively.

Turning to the boundary conditions of Table 13, the hi

+czcogn—1)0+c,SIN(A—1)0

where c;(i=1—4) continue as constants. Stress resultants
follow from (4.13. Now we can apply the homogeneous

Sc’)ac');undary conditions of Table 13. These boundary conditions
then turn out to have mathematically analogous conditions in

S o _ _ Sfable 1 for in-plane extension. This enables us here simply to
torical introduction in Love]112] credits Kirchhoff{113) as use the eigenvalue equations for in-plane extension given in

beml% f;)rst tﬁ a(_jva”nce ‘50”?':'0% ﬂo: ?hfrfe”et(:]ge. Wh'lelt't tSection 2.1 for out-of-plane bending with classical theory.
\t/)vou ep yflca ydna utrr? fo |ntsr|]s da al Teel rt(ra]su ants 1 explain themathematical analogfurther, the simplest
€ zero on a free edge, he fourth-order classical theory ding boundary conditions to consider are for a clamped

g/clytr?dtmlt. two (ior}dltlong ger elddge. lCondnu;n,sfiirr]e :Ee or built-in edge. Applying Conditions Jlof Table 13 oné#
o that arise out of a variational development of the eoryé(ﬁ to u, of (4.16 implies

Conditions I}, are the counterparts of built-in end conditions
in beam theory. Conditions,land II,, respectively, are IA
physically closest to Conditions | and Il of Table 1 for in- A=0,%=0, at 0=¢ (4.17)
plane loading.

As previously, when the same conditions apply on botfhese requirements oh are the same as would result from
plate edges it is advantageous to distinguish between syfstress-free edge for a plate in extensisee(1.1) on re-
metric and antisymmetric response. Symmetric responsiicing (\ +1)cs and (A +1)c, therein withcs andcy). It
about the plate bisector implies thatis an even function of fo|lows that clamped conditions under bending are math-
¢ about§= ¢/2. Conditions Il, ensure that this is so. Con-ematically analogous to stress-free conditions in extension as
ditions 1V, physically correspond to a simply supported ofyr as eigenvalue equations are concerned.
hinged edge: If applied on the plate bisector, however, they similarly, other mathematical analogies can be developed.
take on the role of antisymmetry conditions by ensutin@s  For example, a free edge under bending is analogous to a
an odd function off aboutf= ¢/2. clamped edge with extension. This last analogy only holds,

Conditions \f, are for a plate attached to an elastic bar iRowever, whernx in extension conditions is replaced Iy,
torsion and bending. Hendeg is the bar’s torsional stiffness, =(3+v)/(1—v). Al told, the following mathematical
kp its bending stiffness. With the present resultaiiésis  analogies hold between the bending boundary conditions of

positive on a positived edge and vice versa, whill, is  Table 13 and the extensional boundary conditions of Table 1:
negative on a positivé edge and vice versa. These condi-

tions are physically closest to Conditions VI of Table 1 for l,—II(A—1) with k—«y, I, or Vp—lI
in-plane loading*

As earlier, there are noonditions at infinityor in-plane M=l IV y—IV
length scalepresent in the formulation. For the reasons ad-_ . ] .
vanced in Section 2.1, this is appropriate in an asymptof¥ithout the @ —1) factor, the first 0f4.18 is developed in
treatment. Further, regarding theegularity requirement @ general context in Southwell16], which also observes
(4.14, we remark that this can be included provided ththat the second for jlwas well known circa 1950. The factor
resulting formulation can be shown to be complete. Giveld —1) is not significant when considering power singulari-
the analogy between the extensional case and bending setlt§ Put could play a role in |dent|fy|qg log singularities
subsequently in this section, completeness would sedf€ni=1. The analogy for I} follows directly from com-
likely, although it is not formally established. Given comParing conditions as done fd4.17), while the analogy for
pleteness, the singular fields admitted I6%.14 have Vo is noted in Rad48]. The equivalence of yand Ii,
bounded displacements. follows from an adaptation of the argument in Sincl&g]

Analysis proceeds on using the second and thirt#df2) for boundary cor_ldi_tions \_Nhich haveT .terms vyith a differgnt
to eliminateQ, and Q, from the first, then substituting for r-dependence within a single condition. While the equiva-

for any\, similar arguments show elastically restrained con-

2A development of the conditions for an elastically restrained plate in rectangul(azllrItlons to be equwalent to stress-free conditions for the spe-

coordinates may be found in Art 22, Timoshenko and Woinowsky-Krigge#]. cial case ofA =1, and to symmetry conditions for the special

(4.18)
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case ofA=2. This last can lead to log singularities withtions of the boundary conditiong | Il,, and 14, and vertex
elastically restrained conditions, something we investiga@gles not exceeding 180°, Williarht15] furnishes the real

subsequently.

parts of dominant singular eigenvalues. Typically these are

From (4.18, then, we have the following eigenvaluedetermined numerically.

equations for general, and free (}), built-in (ll,,), simply
supported (1Y), and elastically restrained (Y conditions,
directly from Tables 2—4 of Section 2.1:
lb_lb (21@ ()\_1) with K— Ky

for symmetric response

(2.149 (N—1) with k—

for antisymmetric response

I, or Vy—Il, or (2.9 for symmetric response

Vi

(2.13 for antisymmetric response (4.19)
lb_”b or Vb (217) ()\_1) with K— Kp )
=1V, (2.14 (N\—1) with k— Ky, p—2¢
II, or V=1V, (2.13 with ¢—2¢

For IVy,—IVy, singular eigenvalues can be determined
analytically from(4.20. Thus for symmetric configurations,

A=(2n-1)2—1 ((2n-1)<p<nmn=12)

¢
a
7\=1ig(ﬂ'<¢S2ﬂ') (4.23)
while for antisymmetric,
2
)\=?—1 (m<p<2m) (4.24)

For simply supported conditions on both plate edges, th®y the minus sign in the second @23, the range of can
corresponding eigenvalue is merely indicated at the end g extended to include. Some of the limits on the ranges
Section 2.1. This is because the corresponding extensiOf@I¢in (4.23 and(4.24) are because the shear resultants are
configuration is not that physically significant and consegentically zero for these eigenvalues and thus there are no
quently has received little attention. Here, with bending, it isingularities when &\ <2.2° The dominant singularity for
physically important, so we give its symmetric and antisymy< 7 comes from the first of4.23 with n=1. This eigen-

metric equations explicitly:

IVp—IV, cosh¢+cosp=0 for symmetric response

(4.20)

COS\ ¢p—cos¢p=0 for antisymmetric.

The equations if4.20 are consistent wit{4.18 and the

combined eigenvalue equation indicated at the end of S

tion 2.1.
For the most part, the eigenvalue equation4ot9 and
(4.20 are basically available in the literature. Dix$hl7]

gives an equation for J1l, and a 90° corner. Carrier and'b~
Shaw[118] gives an equation for,+1, and antisymmetric

response. These equations are confirmed in Willigii$)],
which also gives equations for all combinations gf Il

value is plotted in Williamg115].

For ll,—11, and any vertex angle, the real parts of singular
eigenvalues for both symmetric and antisymmetric response
are given in Morley119]. For ¢=270° with l,—I,, =11,
and 1V,—1Vy, singular eigenvalues are given in Hrudey and
Hrabok[120], including real and imaginary parts when ei-
genvalues are complex. For all possible combinations of
boundary conditionsy|, I, and I\, and vertex angles be-
tween 180° and 360°, Leissa, McGee, and Hur{] fur-
nishes the real parts of dominant singular eigenvalues. For
lb whenv=0, 1/3, 1/2, 1}—1l,, and L—Il, whenv=0,
singular eigenvalues may be obtained from Seweryn and
Molski [20], on using the analogies i®.19. In Seweryn
and Molski[20], symmetric and antisymmetric responses are

and IV, . When conditions are nonmixed, symmetric and aflistinguished and provided separately, both real and imagi-
tisymmetric equations are not distinguished in WilliamB2ry parts of complex eigenvalues are furmnished, and singu-

[115] but are both included in a single equation. Combined f

this way, corresponding equations #.19 and (4.20 are

either exactly the same as, or equivalent to, the equationst

Williams [115].24
From (4.13 and(4.16),

M=0(r*"1), Q=0((c3+cH)r*2?), asr—0 (4.21)

on R, where M is any moment resultant) either shear

resultant. Thus provided, is not purely harmonicie, pro-

vided c3#0 orc,#0), the general range of eigenvalues fo

power singularitiess

0<\<2 (4.22)

gr eigenvalues other than just the dominant ones are given.
For I,—Il, and ¢=90°, complex singular eigenvalues are
abulated in Gregory, Chonghua, and WgI22] for v
=0,1/4,1/3,1/2.

The singular eigenfunctiondor a cracked plate under
bending within fourth-order classical theory are derived in
Williams [123]. Under symmetric loading one might expect
the tension side of the plate to have the same stress distribu-
tion as for a Mode 1 crack in extensigdeveloped in Will-
irams [124] and Irwin [125]). While both have inverse-
square-root stress singularities and tensile normal stresses
acting transverse to the crack and directly ahead of the crack
tip, classical bending theory predicts a compressive normal

Singular eigenvalues in this range comply with the regulariﬁIrESS acting parallel to the crack and ahead of it. This is in

requiremeni(4.14).

Singular eigenvaluesvithin the range(4.22 are deter-
mined in the literature as follows. For all possible combin

24None of the §— 1) factors in(4.19 are present in equations in the literature. Pos-

sibly this is because the basic fields attendi#d.6 are nonsingular fok = 1. Auxil-
iary fields are singular however.

marked contrast to the extensional case which has the normal
stress parallel to the crack being tensile and equal in magni-

dude to the transverse component. Given the key role played

by boundary conditions in influencing the character of stress

?5The Kirchhoff shearQ ,— M, ,/ar, would however be singular for wider ranges of
b With 1<A<2.
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singularities, the arguably less physical result of classical

bending theory may be because the crack flanks are not truly///izm
stress free with fourth-order theory. M T
Turning to stress singularities involving logarithmic &Q OQ (; ‘) ‘5MD
terms at the outset these stem from auxiliary bending fields -
generated by differentiating4.16) with respect tox. The
ensuring development is outlined in Sinclgi26]. As for the
extensional casdogarithmic intensificatiorof power singu-
larities can be expected to occur when eigenvalues transition
from complex to real. Such instances have yet to be fully :
checked out in the literature. Rather than logarithmic inten- /'E'/"‘sa’p'ate s
sification, here we concentrate pare logarithmicsingulari- ] l l I"o I I E
ties. 11 Y%
There are two eigenvalues which result in what might be
termed pure logarithmic singularities. First far=1, pure
log singularities are possible in moment resultants. Typically, (b) ®)
these are accompanied byr Igingularities in shear result-
ants. That is, we have

@

Hinge

Fig. 14 Examples of configurations with logarithmic stress singu-
larities: @), a') plates with applied moments and log singularities in

M=0(Inr), Q=0((&5+¢&3)/r), asr—0 (4.25) Or, 0, @ndry,; b), b') plates with applied shears and log singu-
larities in 7, and 7, .
on M when\ =1, wheret; andt, are constants in auxiliary
fields corresponding toz andc, in the basic fields attending

(4.16. Even whent;=¢,=0 and the shear resultants van-, ) )
ish, the Kirchhoff shear has arlkingularity. Thus these 1€dS as in(4.27) but with the roles oRQ, andQ, reversed.

singularities are associated with some form of concentratg) hird example _is the /hinge_d quarter-plane plate under ap-
shear loading. plied momentgFig. 14a’). This has

Second forn=2, pure log singularities are possible in M=ordInr —0,=0 asr—0 4.28
shear resultants. That is, we have dinr), Qr=Qy=0, - (4.28)

M=o0(1), Q=0((e2+¢&2)Inr), asr—0 (4.26) on R(¢=m/2). The Kirchhoff shear, though, still behaves
like 1/r asr—0.
on R when\=2. These are the weakest singularities pos- The presence of fLterms make it unlikely that any of the
sible and consequently the least readily detected with Nféregoing could pass undetected in a stress analysis. This is
merical methods. ACCOfdineg their asymptotic identificatiOﬁot the case for singu|arities as(mZG) According|y, we list
can be of significant value. all configurations known to have singularities of this form in
Conditions for singularities as i4.25 with homoge- Taple 14(from Sinclair[126]). For elastically restrained con-

neous boundary conditions are as in the next to lasi® ditions, some of these stem from their equivalence with sym-
with ny=4. Conditions with inhomogeneous boundary conmnetry conditions for the special case ok 2.

ditions are as in the last two @1.5 with ny,=4. Examples In Table 14,¢y, is such that
of corresponding boundary conditions are those associated

with the constant$viy and Mo in Iy, and IV, of Table 13, 4, sir? ¢y=(y+ 1)(2= VA— xp) (4.29)
respectively, with the other constants in these conditions be-
ing set to zero. If in addition to (4.29, x,= —tandy /¢y, cos 2hy, by defini-

Conditions for singularities as i4.26 with homoge- tion, thenk=k, ¢,=¢,. Two examples of singularities as
neous boundary conditions are as in the next to lasild in (4.26 are shown in Figs. Btandb’. The first is for a
with ny=4 except that nowk = 2. Conditions with inhomo- half-plane plate with a step shear and thus quite analogous to
geneous boundary conditions are as in the lagtld with  the extensional case. The second is for a quarter-plane plate,
na=4, but now withA=2 instead of 1. Correspondinghinged on one edge with shear on the other. This example is
boundary conditions are t[lose associated with the constagéshaps less obvious than the first, although it is really
Mg, Vo, Ug, Ug, Mg, andug in Iy, I, and IV, with My equivalent to it. Even less obvious in Table 14 js-I, for
and M, being set to zerdsee Sinclaif126)). the half-plane wheM ,=Mgr: Here the moment resultant

As a first example of a singularity as {#.25, we have actually varies continuously along the plate edge, though its
the out-of-plane line load on the edge of a half-plane platéerivative does not.

This has Turning to plates made of multiple materials under bend-
_ -~ _ ing, there are relatively few instances of singularity identifi-

M=ord(nr), Q-=ord(1/r), Qy=0, asr—0 (4.27) uon compared to the extensional case. However, Fenner
on R(p=m). Full fields may be obtained from Article 49,[80] shows that perfectly bonded conditions in bending with
Nadai[127]. A second example is the half-plane plate agaifourth-order theory are effectively equivalent to perfectly
but now under a step moment on its edg&y. 14a). This has bonded conditions in extension as far as eigenvalue equa-
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Table 14. Configurations with logarithmic singularities in shear resultants

Boundary conditions Configuration specifications
on 0=0,¢ (m=1,2)
lo—1p ¢=m or 2w, M§#0 or Vy#0

Kp= *sec¢, and

*1

M{(kp+2)f tanE #+Vy(2— k)
=11, or Vy, ¢=m or 2, uy#0 oruy#0
IVi—1V{ = or 2m, M+ 609(1—v) pp
lp—Ily or Vy, é=y, Kp=Kp
=1 =y, Kp# Ky and

(M{—6ug(1—v) up cos 3p)(3 sin 3p—(ky+2)sin )
#(Vo+2u{(1— v) up cOS 3p)(3 cos 3p+(kp—2)COSh)
v ¢:(2m—1)g, and
b~ Vp
2400(1=0) pp# Mo(Kp+5) = (=) "Vo(p+1)
¢=mm, Mo# (~)"™M}
o=V, ¢= or 2m, Vy#0
¢=/2 or 3m/2, My#0
Kp=S€C 2, M{(kp+2)tanp#Vy(2— k)

o
d=(2m— 1)5, and

=1V},
2M# (1= v) up(3(3= k) blg— (=) "(sep+ 1)U)
d):mﬂ-v 007&(_)muo

11—V ¢=ml2 or 3m/2, uy#0
¢=rr or 2m, uy#0

IV{—V, ¢=ml2 or 3m/2, M}# 60oup(1— 1)

tions are concerned. Herein perfect bonding in bendimgpendent of so that field equations continue to apply®n

matchesu,, du,/df, M,, and Q,—dM,,/dr. Then the of (2.1). With these preliminaries in place, we can formulate
equivalence holds provided the class of out-of-plane bending problems of interest as
next.
K—Kp, pylpo— ol (4.30) In general, we seek the out-of-plane displacemegntits

whereu, andu, are the shear moduli for material on eitheﬁta“gnswénzngw”ésapudngtsioisssz(;r'a;end d rzilﬁlsgﬁbﬁf 90% '
re rs [4 ’

side of the mterface. Thus using the analo_g|e$4uig), er atisfying: theequations of equilibriunmin the absence of
genvalue equations for perfectly bonded interfaces can E)e

obtained from extensional counterpaf8ection 3. ody force_s and loading on_the platt_a fac@sl_@ on i, th?

) . . resultant-displacement/rotation relatiorier a linear elastic

There are two instances of bimaterial plates under bend- T . .

. - : . X ate which is both homogeneous and isotropic,
ing explicity treated in the literature. The first concerns

crack meeting an interfacé=igs. & andb’). Fenner[80] M ” I Ju,]( +) 4h? 9Q
== 1] 7% - 5|
4

determines singular eigenvalues for any angle of incidence 02 5
and a range of ratios. The singular eigenfunctions for the r '
crack parallel to the interface may be obtained from Sih and 2

Rice[128]. The second concerns a bonded bimaterial plate. M, = mp(1— 1) i(l auz) — ﬂ(l 9Qr +r i(@))
Huang[129] computes singular eigenvalues for a variety of ar S \radg  orir

r deo

geometries and a range of moduli ratios. (4.31)
4.4 Out-of-plane bending: Higher-order theory . &

In this section we consider the singularities that can occur in [&} _ Spp(1—v) or

the out-of-plane bending of an elastic plate when treated | Qo 4h? 1 du,

within sixth-order theory. The particular theory considered is @t T2y

due to Reissndrl30]. This is the sixth-order theory that has
received most attention when it comes to singularity identi-
fication. We do comment brieﬂy’ thoth’ on a similar th(:)oqlzalble 15. Boundary conditions for out-of-plane bending with Reiss-
in Hencky[131]. ner's theory y P g
The angular elastic plate to be bent continues to be as-in

. ) . Identifying Boundary Physical
Fig. 12f. ﬁs f(l)r clgssm_al theory, the O:Jt-of-plane displacesoman numeral conditions description
ment of the p gte i81,, its moment resultants aid , , M(, - M,=0,0,=0,0,=0 Stress free
and ll\/lrg, a?]d its s_hear resu(jlt;qts a{rﬁ, a?d Qg (posmvg ”|B uzzod (K/rlzo,éugo o gampetd
. w,=0, =0, Qy= ymmetry
resultants shown Fig. 13In addition, the plate has rotauonslvz uf=o, wrr=90, M9=00 Simply supported

o, and wy. All of these field quantities are taken to be in-
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on R, whereinu, remains as the flexural rigidity; any one ofon fR. In solving(4.34), we need solutions with six constants
the sets oboundary conditiondg, Ilg, or IVg in Table 15 sharing a common power ofin order to meet the six bou.nd-
on the plate edge at=0, together with another such set orry conditions, three to an edge, which hold forralllo this
the edge ab= ¢, or one of Conditions I and IVg on the end, Burton and Sinclajr132] use a series approach with

- _ . .
plate bisector a= ¢/2 as appropriate, for€r <w; and the —PMLA (N, )4+ O(rM )

regularity requiremenat the plate vertex, (4.35)

u,=0(1), ,=0(1), w,=0(1), asr—0 (432) x=r""*A(\,0)+0(r""3)

onfA. In particular, we are interested in the local behavior ¢fn R. HenceA is as in(4.16, A likewise with ¢; (i=1
the fields complying with the foregoing in the vicinity of the—4) exchanged fot;. Then relating the dominant term on
plate vertexO. the left-hand side of4.34 asr—0, theV2y term, to that of
Several comments on the preceding formulation are ihe right-hand side relates; and €4 to ¢z and cy. This
order. First, as with classical theory, the presence of latetafives six free constants as desired<{c,, €;, and¢,).
loading has no effect on the nature of any singularities préhe resulting fields for the dominant termsras 0 are given
vided the loading is integrable. Second, the resultants cdn-{132].
tinue to be related to stresses ag4rll5 so that singulariies ~ What is overlooked in Burton and Sincldit32] is the
in resultants lead to singularities in corresponding strepgssibility of y terms on the left-hand side 64.34) interact-
components. Third, the boundary conditions now prescriligg With the right wheny is purely harmonic. This omission
three quantities per edgef, Table 13: Accordingly, they is corrected in Yen and Zhoid33], the resulting additional
enable the physically natural conditions attending a stredild being given in133].
free edge to be enforced. Fourth, when the same boundarySubstituting the fields in Burton and Sinclai32] into
conditions apply on both plate edges, Conditiong Hind the various combinations of boundary conditions available
IVg enable one to distinguish between symmetric and antiom Table 15 leads to associateigienvalue equationVith
symmetric response—in this role, Conditions glVare the exception of the equation for §+1Vg, these equations
equivalent to antisymmetry conditions. Fifth, there are n@e confirmed in Yen and Zhdd33]. This confirmation oc-
conditions at infinity nor should there be in this asymptotigurs because the additional solution available in Yen and
formulation. Sixth and last, the regularity requirement is cohou [133] does not actively participate other than for a
sistent with classical theory and therefore analogous to eplate simply supported on both edges. These confirmed equa-
lier such requirements: However, absent a formal proof &ons then are the same as extensional counterparts provided
completeness for Reissner’s theory, it is provisional at thistakes on its value for plane stresg=<(3—v)/(1+v)).

time. Accordingly, drawing on results from Tables 2—4 of Section
The theory in Hencky131] has the same equations oR.1, we have? _

equilibrium and boundary conditions as Reissner’s theoﬂy—|a (%-?) f?r symtmetrlc ﬂ;‘sponse

Differences occur in the resultant-displacement/rotation relg- _ gz: 18 for gyn'f%gmf rrelgggﬁggnse 436)

tions. In the absence of loading on the plate faces, these (2. 14; for antisymmetric response :

differences are confined to the numerical coefficient&of IB_”B (2 12 with )
terms in (4.31). Moreover, these differences are con5|steI IVBB gz 123 mth ijzi
throughout(4.31). As a result, Reissner’s theory can be trans-

formed into that of Hencky simply by making the transfor- . . .
, 576h | e For IVg—IVg, the additional field of Yen and Zhdu33] is
mationh— In (4.31) whereverh occurs explicitly(ie, active and the eigenvalue equation in Burton and Sinclair

there is no change tp,). It follows that we can expect the
singularities in Hencky’s theory to stem from the same 95132] has an additional factor. Accordingly we have:

genvalue equations as for Reissner’s theory once this trans- n
formation is implemented. IVg—IVg (COSA¢pEcos¢p)cogN—1) 5= 0 (4.37)
Analysis proceeds on introducing a stress functioro

that the first of(4.12 is satisfied. Thus The plus sign in(4.37) is associated with symmetric re-

1 3)( 3X sponse, the minus sign with antisymmetric. The eigenvalue
Q.= Qy=-— (4.33) equations in(4.36 and(4.37) are independent di. Conse-
T a0’ quently, the singular eigenvalues in Hencky’s theory are the

on fR. Substituting(4.31) and (4.33 into the last of(4.1 sameas those in Reissner’s theory.
then gives 9(4-31 (4.33 4.12 For (4.35 from (4.31) and (4.33),

M=0(r*1),Q=0(r*

i( _2h® ) Fo 0 g2y O(r™.Q=0(r") (4.38)
> r a0 (4.34) w=0(r"),u,=0(r**1),as r—0

17 2h2V V 2®There i hical in th d ei | ion in Table 1 of B

_ |y — = — ere is a typographical error in the second eigenvalue equation in Table 1 of Burton

r 06 X X ’U“bar( uZ) and Sinclaif132]. The correct result is given i%.36).
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on R, where w is either rotation component. Frofd.32, within Reissner’s theoryit is also possible with classical
admissiblepower singularitiesn moment resultants then oc-theory). In some instances, overlapping displacements may

cur for be negated by the addition of an in-plane tension of sufficient
0O<Rer<1 (4.39) magnitude. Otherwise, more physically appropriate results
can only be obtained by entertaining contact of the flanks
For the additional solution of Yen and Zh¢w33], and tracking this contact as loading proceeds. Such an analy-
M=0(r*"3), Q=0(r"2) sis is really 3D, as well as being geometrically nonlinear: As
(4.40) such, it is outside the scope of this section.
0=0(r""?), u,=0(r*?%), asr—o0 For logarithmicterms undehomogeneouboundary con-

. . . ditions, conditions likg1.3) are indicated in Burton and Sin-
on R. Admissible power singularities in moment resultants, _. . : .
Clair [132] for fields stemming from(4.35. No actual in-
occur for . . ) T
stances of these singularities are identified in Burton and

2<Ren<3 (4.41) Sinclair [132]. Logarithmic terms can be generated for

. . simply-supported conditions and the additional fields of Yen
Observe Fhat., with elth.e(4.3& and. (4.39 or (4.40 an.d and Zhou[133], although it remains to be determined what
(4.4, M is singular whileQ is not, in contrast to classical

; : ; . additional conditions these logarithmic fields must meet in
theory whereQ is typically more singular thaM. Singular . " garthmic f ) !

. . . _ order to participate.
elgenval_uesas |n(4.39 for (4.39 can be olt_Jtalned directly There is also the possibility of logarithmic singularities
from their extensional counterpartsee Section 2)2

. T : ) being induced bynhomogeneouboundary conditions. This
For simple supported conditions, singular eigenvalues

. ! ) : e of response can be expected to include configurations
in (4.39 for (4.38 from the first factor in4.37) are included . . o

. . . . that dt t fl t larit d
in (4.23 and (4.24. Singular eigenvalues as i.41) for at correspond to instances of log stress singularities under

) ) inhomogeneous boundary conditions for plates in extension
(4.40 from the second factor i(¥.37) are: (Section 2.4. Some support of this expectation being ful-
T filled can be found in HartranftL38]. There a log singularity
A= $+1 (ml2<p=<mm) is identified inM, in response to a step i, on a plate
(4.42) edge =), whereas no log singularity is found for a step

T in M,. Thus this situation is analogous to the in-plane case
A= b 1 (3ml2<¢=<2m) wherein a step in shear on a half-plane plate produces a log
. ] . singularity (Table 7, Section 2)}4 while a step in normal
These eigenvalues are given in Yen and Zhb83]. stress does not. A further log singularity@} in response to
_ _There is a further.smgular field for simply supported cory step inQ, on a plate edge is identified in Hartraftt38].
ditions not included if132,133. This has While this configuration has no counterpart in extension, it is
M=0(r"?%), Q=0(r"*-1) analogous to the antiplane shear case wherein a step in shear
(4.43)  on a half-space wedge produces a log singuldfigble 10,
w=0(r™**Y) u,=0(r™?), asr—0 Section 4.1

For plates made of multiple materials treated within Re-
issner’s theory, the only singularity identifications that would
appear to be available in the literature are those in Huang
,g129]. These are for closed bimaterial plates and simply sup-
ported bimaterial plates.

on fR. Thus for ¢> 7, this field hasQ singular,M not, in
contrast to the results if132,133. This singularity is iden-
tified in Huang, McGee, and Leis$a34].

Turning to companion eigenfunctions for Reissner
theory, for the fields associated wittd.39, both the
r-dependence and the individual functionséah eigenfunc-
tions can be shown to be the same as extensional counter-
parts(see Williams[2] and Burton and Sinclair132]). Thus
all that is needed for eigenfunctions to coincide completely STRESS SINGULARITIES FOR OTHER ELAS-
to within a multiplicative factor is that the weighting of theTIC CONFIGURATIONS
individual functions ofé be the same in bending as in exten-
sion. 5.1 Axisymmetric configurations

That this in fact can occur is demonstrated for the case Afrepresentative axisymmetric configuration is sketched in
a crack in a plate of vanishing thickness in Knowles anfdig. 15. This depicts a right circular cylinder with a conical
Wang[135]. For a plate of finite thickness, it is demonstratedap bonded into a half-space which in general is comprised
for a crack in Hartranft and Sifi136] and Wang[137]. of a material with distinct elastic moduli from the cylinder.
Hence the tensile side of the plate in bending behaves as iTfte end of the cylinder above the half-space is subjected to
is a crack in a plate in extension, a physically reasonatd@ applied torqud and an axial forcé&. Stress singularities
result in contrast to that of classical theory. can be expected at the vertex of the céhe and at points

On the compression side of the plate, the eigenfunctiavhere the perimeter of the cylinder is bonded to the half-
for the crack in Reissner’s theory leads to interpenetration space(eg, P¢). For each location, we wish to consider the
overlapping of the crack’s flanks. While this is not physicallgingularities that may be induced by either the torquer
possible, it is nonetheless possible in an elastic analyi® forceF. Thus we have four configurations: the inner core
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F In general, we seek the axisymmetric shear stresggs
T and 7, and their companion displacemany, as functions
s of p and ¢ throughoutR, satisfying: thestress equation of
equilibrium absent body force,
8799 &TW,
Elastic pW+W+37p0+ 274, COtY=0 (5.3)

cylinder.
on fR; the stress-displacement relatiorfer a linear elastic
cone which is both homogeneous and isotropic,

——————

dug Uy 2

Toog= M| —— — — |, Tos—
pe (ﬁp p) Y p

du, .
———UyCOo
gy Yo v
on R, whereinu continues as the shear modulus; Hweind-
ary conditionfor either a clamped or a stress-free cone sur-

(5.4)

Elastic half-space face,
for 0<p<; and theregularity requiremenat the cone ver-
tex,
Fig. 15 Singular axisymmetric configurations uy=0(1) as p—0 (5.6)

onfi. In particular, we are interested in the local behavior of

i . i ) . the fields complying with the foregoing in the vicinity of the
vertex with torsion or with axial loading, and the outer cylxgne vertexoO.

inder boundary with torsion or with axial loading. We treat T4 golve the preceding problems, first substiti@e) into

each of these in turn in what follows. (5.3). Then seeking a separable solution gy of the form

For acone vertex under torsiorspherical polar coordi- )¢y leads to Legendre’s associated differential equation.
natesp, ¢, and¢ enable the asymptotic problem to be readilyjence for bounded, when =0

formulated(Fig. 16). These coordinates share a common ori-
gin O with the rectangular Cartesian coordinatey, andz, Uy=Cyp" Py(COSY) (5.7)

and are related to them by: ) - : .
y Here c, is a constant coefficient, anl; is an associated

X=psingcoshd, y=psingsing, z=pcosy (5.1) Legendre function of the first kind of degreeand order
one?’ The eigenvalue equations attendit®4), (5.5, and

for 0=p=c¢, 0=¢=m, and 0= §=2a. Under pure torsion, (5.7) are developed and solved numerically in Bak and
the only displacement is that in thedirection,u,, which is ' ) .
y disp 0 Keer[140]. No roots are found in the range<O\<1 irre-

a function ofp and s alone. Hence the open region of inter- -
estR is spective of cone vertex anglé. Consequentlyno power

singularitiesare found for the cone vertex under torsion.
R={(p, ¥)|0<p<x=, 0<y<¢/2} (5.2) For acone vertex under axial loadinghe same spherical
polar coordinates are appropriateig. 16. Now there are
two displacementsy, andu,,. However, both are still only
functions ofp and, so that the region of interest remaiis
of (5.2. On this region we can formulate oumner axial
problemsas next.

In general, we seek the axisymmetric stress components

where ¢ is now the vertex angle of the cone. With thes
geometric preliminaries in place, we can formulate iouner
torsion problemsas next.

P . . .
z ! o,, 0y, 0y, andr,,, and their companion displacements
: u, andu,, as functions op and¢ throughoutR, satisfying:
' the stress equations of equilibriuaibsent body forces,
|
\ i (9a'p &Tp,/,
{ pE W"‘ZO"O_UM/_O'(,‘FTPI/,COU,&:O
! (5.8)
Elastic cone, ® i doy 9Ty 3 -0
~
5 on fR; the stress-displacement relatiorier a linear elastic

cone which is both homogeneous and isotropic,
X

Fig. 16 Spherical polar coordinates for a cone vertex 2"The functionP} is as defined in Ch 8, Abramowitz and Steda39].
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vO® Jdu z . .
= i Elastic cylinder
Tp ZM_ 1-2v  dp
=R T2y pl Ty e
i v.op\dy (5.9)
2 vO + ! + t
Oyp= M_l—ZV p(up u,//CO lﬂ) /’—_O_
y
1du Jau u
_ P 4 4 9
Top=| =t ————
o L - dp  p - ~
with
Elastic half-
o &up N 2Up N 1 <9U¢/+ u, w (5 10) astic half-space
=—+—+—-——+—C0 .
dpp pIYy p

on R, wherein® continues as the dilatatiom, as Poisson’s
ratio; theboundary conditiongor either a clamped or stress-
free cone surface, Fig. 17 Cylindrical polar coordinates for a cylindrical boundary

u,=u,=0 at ¢=¢/2 (5.11)
or

cone, some of the singularity exponents involved are com-
0,=T,=0 at ¢=¢/2 (5.12) plex. However, the magnitude of the singularity exponent, or
of its real part if complex, is bounded from above by that for
clamped conditions in Bant and Keef140].
By way of an example of &ylindrical boundary under
u,=0(1), uy,=0(1), as p—0 (5.13) torsion we reconsider the configuration in Fig. 15, but now

onfRA. In particular, we are interested in the local behavior (With the cylinder and half-space comprised of a single elastic

the fields complying with the foregoing in the vicinity of thema'[erial. For this and like configurations, cylindrical polar
cone vertexO coordinatesy, 6, andz enable ready formulatiotFig. 17).

Thompson and Littl¢141] uses Papkovich-Neuber poten—T hese coordl_nates sha}re a common origimith the rectan-
ular Cartesian coordinates y, andz and are related to

tials to develop solutions for the preceding field equationg,

and also derives the eigenvalue equation (fad2. Using them by

the same solutions, Baat and Keef140] derives the eigen-  x=r cosé, y=rsing, z=z (5.15)
value equation fo5.11), and solves both eigenvalue equa-

tions numerically. Power singularities are found for botfP’ O=r<%, 0<0<2m, and —w<z<e. Under pure tor-
clamped and stress-free conditions for reentrant cone verticid!: the only displacement is that in tiedirection, u,,
(ie, m< ¢=<2m). The singularity exponents involved are a”/vh.lch is a function ofr andz alone. Hence the open region
real and depend on the value of Poisson’s ratio. Singularf?{x'meresm becomes

exponents are givgn for ranging from 0-0.499 in incre- R={(r, z)|0<r<R,0<z<® or 0<r<o,—»<z<0}
ments of 0.1 in Baant and Keerf140]. Exponents forv (5.16)

=03 are cqnflrme'dl in Beagles andriig [142]. . . whereR is the radius of the cylinder. On this region we can
Further singularities for a cone vertex under axial Ioadm% .
rmulate our sampleuter torsion problenmas next.

occur when the cone iggid andindentsan elastic half-space : :
In general, we seek the axisymmetric shear stressges

(cf, Fig. 15 _nearPs). Herein the boundary conditions in theand 74, and their companion displacemany, as functions
contact region are

of r and z throughoutfR, satisfying: thestress equation of

for 0<p<; and theregularity requirementsat the cone
vertex,

u,=uUp—pcotepl2, 7,,=fo,, at y=ml2 (5.14) equilibrium absent body force,
whereuy is the penetration of the cone vertex andontin- ITrg 2Ty Ty
ues as the coefficient of friction. The frictionless case of this ~, Tt 9z (5.17)

configuration is analyzed in Lovd43] and leads to a loga- . . . )
rithmic stress singularity at the cone vertex. The friction ca$® 7% the stress-displacement relatiorfer a linear elastic
also has a log singularitfHanson[144]). cylinder and half-space which are also homogeneous and

Bimaterial cone verticegas atP in Fig. 15 are analyzed !SOtropic,
in Keer and Parihdrl45]. Perfect bonding on the interface is Ju. U Iu

. 4 4 0

assumedie, o, 7,,, U,, andu, are matched ap= ¢/2). Tm:,u(a—r - T)’ T~ Ky (5.18)
Power singularities are identified for varying elastic moduli
and cone vertex angles. In contrast to the single materal fR; the stress-fre@oundary conditions
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P .9 cosf d
—=-sinf—— —— —
ar af f
70 (5.23)
d ~d sing ¢
—=C0S¢—————
0z ar r 56

Then(5.18, (5.22, and(5.23 give

Jdu; 1
Tﬁ:,u#?'f‘O(R ) as R—w
Fig. 18 Section through the cylinder and the half-space with local (5.24)
coordinates at the reentrant corner
M du

=7 (9—02+O(R’1) as R—

T9=0 atr=R (0<z<wx) 5.19) In (5.24, the limit R—oo corresponds to approaching the
' corner atO. Thus under this limit we have the same stress-

7= 0 at z=0 (R<r<wx) displacement relations as for antiplane shézr (4.2) of

and theregularity requirementt the reentrant corner, Section 4.1 _ o _
Turning to the stress equation of equilibrium, we invert
u,=0(1) as JR=1)2+722-0 (5.20) (5.22 to obtain7,, and 7, in terms of r;; and 733, then

. . . . substitute inta(5.17). This gives, usind5.23,
onfA. In particular, we are interested in the local behavior of o517 g g5.23

the fields complying with the foregoing in the vicinity of the
reentrant corner at=R andz=0. dris 1 1 dTys N

One expects that in the local vicinity of greatest interest, a ?jL 3 + 7 9B +O(R™)=0 as R—w (5.25)
state ofout-of-planeor antiplane sheadominates response.

If this is so, we can simply draw on the singularities identiAgain we have the same equation as for antiplane sleéar
fied for antiplane shedSections 4.1 and 4)2o identify the (4.1) of Section 4.1 Further, the boundary conditions for
singularities possible in outer torsion problems. our sample problem simply are

To show that antiplane shear indeed characterizes re-
sponse for the case of our sample problem, as well as for any R
other outer torsion problem, we proceed as follows. Without 753;=0 at #=0, 3m/2 (5.26)

loss of generality we consider a section through the configu- R ) )
ration of Fig. 17 on they axis fory=0. For this section we [0F 0<Ff<%. Thus we have in5.24—(5.26 an antiplane

introduce local cylindrical polar coordinatés 5, andz with shear problem belonging to the class formulated in Section
origin O at the reentrant coréFig. 18. These are related to4-1- Consequently, frort.?),

rectangular Cartesian coordinatgs¥y, and z sharing the

same originO as in (5.15 with carets: Consistent with a 7=0(7 "%3) as f—0 (5.27)
right-handed systent, is positive out of the plane of Fig. 18.

Then the original coordinate system is related to the nemherer is either shear stress.

local system in the plane of Fig. 18 by: There is nothing special about our sample problem. Any
R R other feature on the cylindrical boundary can have its bound-
r=R—fsin#, z=T7 cosd (5.21) ary conditions transformed so that locally they match those

of Table 9, Section 4.1. Further, when multiple materials are
involved, interface conditions can be matched with those of
Sable 11, Section 4.2. It follows that all of the singularities
identified in Sections 4.1 and 4.2, including log singularities,
apply to corresponding outer torsion problems.
(5.22) Demonstrations of this correspondence are available in
the literature. Early examples are the penny-shaped crack
under torsion in Section 5.4, Neubgt7], and torsion of a
Now we wish to substituté5.18) into (5.22 to determine the rigid disk on a half-space in Reissner and Sagddb]. Both
stress-displacement relations in the local coordinate systdmve inverse-square-root singularities as would be predicted
In order for the results to be in terms of the local quantitiefrom (4.7) with ¢=27 and from(4.8) with ¢ =, respec-
we make the exchangge,= —u; and invoke the chain rule to tively. For a general V-notch in a pipe under torsion, Tsuji et
obtain al [147] obtains singularities as if4.7). This paper also

For the shear stresses of the local coordinate systgngnd
T4, equilibrium of a pair of appropriately oriented triangle
leads to

Ti5= T, SIN@— T4, COSH

)= Ty 9 COSO+ T4, SIN G
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treats a bimaterial corner and finds the same stress singulaiinply draw on the singularities identified in Sections 2 and
ties as for antiplane shear. Other examples of outer torsidrto identify the singularities possible in outer axial prob-
problems with bimaterials leading to the same singularitiésms.
as for antiplane shear may be found in Freeman and KeerThat indeed this correspondence occurs is argued in Bar-
[148], Westmanr{149], and Keer and Freemdd50]. A tri- ton [151] and Zak[152]. The approach is similar to that
material example is given in Keer and Freenjaml]. Still presented here for the simpler torsion problem—simpler be-
further examples exist in the literature: The preceding is noause fewer field quantities are involved. While Z4di62]
an extensive list but merely intended to reflect the variety ekplicitly treats stress-free and clamped boundary conditions,
configurations displaying the correspondence. the correspondence is equally applicable to the other bound-
By way of example of aylindrical boundary under axial ary conditions in Tables 1 and 6 of Section 2, and to the
loading we continue to use our sample geometry of a singisterface conditions in Table 8 of Section 3. The end result is
material version of Fig. 15, but now under an axial loathat not just our sample problem but all outer axial problems
instead of a torque. The cylindrical polar coordinatesf, have corresponding plane strain configurations which char-
and z of (5.19, Fig. 17, then continue to be appropriateacterize their stress singularities. Conversely, it follows that
Now, though, we have the two displacemenis,andu,. all of the singularities identified in Sections 2 and 3, includ-
However, spatial dependence continues to be justandz ing those involving logarithmic terms, apply to correspond-
so thatR of (5.16 continues to be the region of interest. Oring outer axial problems.
this region we can formulate our sammlater axial problem Demonstrations of this correspondence are available in
as next. the literature. Early examples are the penny-shaped crack
In general, we seek the axisymmetric stress componentsler transverse tension in Sneddd®3], and the rigid,
o,, 04, 05, @andr,,, and their companion displacements right circular cylinder, with a flat lubricated end, pressed into
andu,, as functions of andz throughoutR, satisfying: the a half-space in Harding and Sneddfh54]. Both have

stress equations of equilibriuabsent body forces, inverse-square-root singularities as is predicted by corre-
P P _ sponding plane strain configurations. A further example of a
Ir Oz T 796, clamped-free right-angled corner is given in Benthem and
o Iz r (5.28) Minderhoud[155], and shares the same singularity as that of
P (2.17 in Section 2.1. An example for a bonded bimaterial
o, JdT; Ty . L . .
+—==0 cylinder is given in Agarwa[156], and leads to essentially

gz o r the same eigenvalue equation for singularities as given in

on fR; the stress-displacement relatiorfer a linear elastic Bogy [85] for the corresponding plane strain configuration.
cylinder and half-space which are also homogeneous af@ain, the references listed here are merely intended to re-

isotropic, flect some of the variety of configurations displaying the
correspondence.
_, v® N du, _, v® N Uy
T T2y T ) T = Ty (5.29)
' 5.2 Three-dimensional geometries with continuous ver-
=92 £+% - ﬂJr& tex paths
Tem M T2y T oz ) T M ez T ar

In this section, we continue to be interested in angular re-
with dilatation gions, but now these regions are 3D rather than 2D. We

distinguish three classes of such geometries. These classes
du, u, du,

on fR; the stress-freboundary conditions
o=7,=0 at r=R (0<z<x®) (5.31)

0,=7,=0 at z=0 (R<r<m)
and theregularity requirementst the reentrant corner

u,=0(1), u,=0(1), as (R—1)2+22—0  (5.32)

onfR. In particular, we are interested in the local behavior of
the fields complying with the foregoing in the vicinity of the
reentrant corner at=R andz=0.

One expects that, in the local vicinity of greatest interest,
a state ofplane straindominates response. This is because,
for a section such as that on theaxis, plane strain hagdé
being a null operator, in common with axisymmetsyas in
Fig. 17. If, in fact, such a correspondence holds, we cafig. 19 Bimaterial elastic wedge with vertex locus a smooth curve

Elastic
wedge, i, v,
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z iii) Geometries wherein the vertex involved traces out a
discontinuous path. An example is the crack intersect-
ing a free surface in Fig. 21: Here the vertex has an
angle of 2r and its path ceases abruptly@t

Constant pressure, p

We review singularities identified for each of these classes in

turn. We begin with the first two in this section, then review
YO the third in a separate following section because of the ex-

X412 A ¥y  tensive number of contributions for this class.
&2 In undertaking these reviews, we do admit some contri-
X o2 r butions entailing a significant amount of numerical analysis.
Previously, in two dimensions, analysis was almost entirely
Elastic half-space analytical: Numerical analysis was essentially confined to the

calculation of eigenvalues from equations derived, a numeri-
cal process that need have no errors effectively, as may be
verified by back substitution. Here we entertain numerical
methods that do entail numerical approximations. We do this
Fig. 20 Constant pressure on a surface sector of an elastic hidécause of the greater intractability of 3D geometries to
Space purely analytical approaches. We still focus, though, on local
singularity identification rather than on global analysis of

are arranged in order of decreasing continuity. As one mighifigular problems. .
expect, consequently they are in order of decreasing tracta-For thefirst class of3D geometriesthe key general result
bility. is established in Aksentidi®0]. For the geometry of Fig. 19,

The three classes of 3D geometries are as follows:  Aksentian[90] proves the asymptotic equivalence of 3D re-

i) Geometries wherein the vertex involved traces out sponse at the vertex to the combination of plane strain re-
path with a continuously turning tangent. An exampl&PONse(in the yz plane in Fig. 19 and out-of-plane shear
is the bimaterial wedge in Fig. 19: Here the vertex hd§SPonse(in the x direction in Fig. 19 Thus, when the
an angle of¢,+ ¢, and its path follows a smooth Vertex in a 3D configuration has a path with a continuously
curve. turning tangent, all the plane strain singularities identified in

i) Geometries wherein the vertex involved traces out $ections 2 and 3 can participate, together with all the anti-
path that is continuous but has a discontinuity in itplane shear singularities identified in Sections 4.1 and 4.2.
direction. An example is the half-space with a loadefllthough eigenvalue equations are only explicitly derived
surface sector in Fig. 20: Here the “vertex” has afor stress-free and clamped boundary conditions and per-
angle of7 and its path turns abruptly throughr2- ¢ fectly honded interface conditions in Aksentigd0], the ap-
ato. plicability of the equivalence for other boundary and inter-

face conditions follows immediately from the asymptotic
governing equationg1.5—(1.7), [90], provided footnote 17
of Section 3.2 is observed.

An example of this equivalence between 2D and 3D sin-
gularities occurs for the 3D problem of a flat elliptical crack
under transverse tension. This shares the same inverse-
square-root singularity of a crack in plane stré8adowsky
and Sternber@158] and Green and Snedd¢h59]). When
this elliptical crack is loaded in shear as well, the inverse-

¥ square-root singularity of a crack in antiplane shear also par-

ticipates(Kassir and Sif160]). Another example is the con-

! tact of an elastic half-space by a flat, frictionless, rigid punch

/ r of elliptical cross section. Again, the inverse-square-root sin-

F Elastic half-space F gularity of plane strain is prese(alin[161] and Green and

| Sneddon159]). When a torsional shear is applied in addi-
/ tion, the inverse-square-root singularity of antiplane shear is
1 added(Mindlin [162]).

Crack

Crack front 28For the case of a single materiab4=0) and a crack ¢:;=2), the same result is

. . . o . given in Hartranft and Sitj157]. There, however, the result is assumed rather than
Fig. 21 Elastic half-space with a crack terminating at its surfacgoven.
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As an initial instance of thesecond class 08D geom- result used in(5.35. Now with a view to representing a
etries we consider an elastic half-space loaded with a pregenstant normal pressure over a sector, we take
surep on a surface sector which subtends an angjléFig.
20). Hence in this problem, in general, stresses and displace-

o

ments are sought throughout the half-space satisfying: the? =r? nzo (a,cosnd)+a,Inr cos 29 (5.36)
3D field equations of elastici§’ and theboundary condi-
tions onz=0,

Ther-dependence i(5.36) realizes ao, from (5.35 which
—p for _(3,/2< 9< 35/2 is independent of, as desired. By suitably selecting the
0‘z=(0 for other 6 Fourier coefficients,, in the summation ir(5.36), it would
' (5.33) appear to be possible to represent a step pressure on the

Ty, = Tx=0 for —m<O<m sector with— ¢/2< §< ¢/2. However, when just the terms in
. . the summation ir{5.36) are substituted int@.35), the o, so
all for 0<r<e (see Fig. 20 for coordinatgs produced lacks a contribution froap. Needed, therefore, is
Cn particular, in thg surface atfo’ the stress componentsine a, term in (5.36). With this addition, a complete repre-
in rectangular coordinates are given by sentation for a constant pressure on the sector results. Also
_ 1-2 with this addition, the log singularity terms ¢5.34) result
(&% p( V) .o~ . K . .
o =1+ o singInr asr—0 (5.34) (on transformingo,, o4, andr,, into their counterparts in
y

rectangular coordinates
with 7,,=0, wherev is Poisson’s ratio of the half-space. For One consequence of the foregoing development is that
¢= /2, this state of pure shear with a log singularity i&@ny pressure distribution which is constant iand even inj
consistent with results derived in Loy#64]. For generakp, ©0n a sector in Fig. 20 has a log singularity associated with it
the log singularity of(5.34) is identified in Turteltaub and (¢=m,27). Thus, for example, if in5.33
Wheeler[165].

Notice that whenp= 27, no singularity occurs it5.34).

o ~ N
This is as it should be when the half-space surface is loaded —pcos—for —p/2<bO< /2
throughout with a constant pressure. Further, witenm, no 0= ¢ (5.37)
singularity occurs. This is consistent with the 2D problem of 0 for other 6

a step normal pressure on a half-space in plane strain which

has no smgulant)(MlcheII [165]). It is also cons.IStem.W'ﬂ'1 there is an associated log singularity. This pressure distribu-

the teaching of Aksentiaf®0] since then the configuration inion has no jumps ap= =+ /2, but still has a jump as

Fig. 20 is a member of the first class of 3D geometries. __ o, — 3I2< 6< BI2. A similar development leads to a
The means of singularity identification in Turteltaub an%g singularity if the pressure distribution is odd éron the

Wheeler[ 169] is via asymptotics on line integral representagrface sector, provided there is still a jump in the distribu-

tiqns _and is quite analytically sophisticated. With further agon as ag—0 (# m,27). On the other hand, if i1(5.33
plication, no doubt it could produce results for other normal
loadings. Too, it can treat shear tractions on the half-space - -
surface(see later. Here, instead, we next develop a more o,= —pr for —¢l2<6< /2
limited approach. While this approach cannot treat shear 0 for other 6

tractions, it is simple for normal loadings.

A potential representation of the stresses within an elastere is no log singularityr€ is now the factor outside the
half-space free of surface shear tractions is given in SectiBffickets in(5.36, and ana; term is required instead @f).
5.7, Green and Zerngl67]. This representation can be ex-This pressure distribution does have jumpgat+ ¢/2, but
pressed in terms of a single harmonic functio none asr—0. Clearly, then, log singularities like that of
=W(r,0,z), with r, 6, andz as in Fig. 20. Assumingt  (5.34 are associated with jumps inrather thané. Away
admits to a Taylor's series expansion & the nonzero from O, this outcome is consistent with Aksentig80] and

(5.38)

stresses in the Surfa@:O then are given by the absence of Singularities with preSSUre jumps in two di-
5 mensions.
or| |]2v] o |t 9V If the sector in Fig. 20 is loaded via uniform shear trac-
= Vs 1 (1-2v) — . . "
o 1 ar 535 tions rather than pressures, log singularities result along the
(5.35) edges of the sector. Fap= 7/2, these log singularities are
1-2v 9 [ 1 9V

__) contained in results in Smith and Alayil68], Shah and
rooar Kobayashi[169], and Liao and Atlur{170]. For generakp,
they are identified in Turteltaub and Whee]&65|. For the
’ component of the shear traction normal to the sector bound-
ary, the log singularities are as for plane stréiolossoff
[15]). For the component parallel, as for antiplane shear
2%A convenient compendium of the 3D field equations of elasticity in all three coordmng [1043)- Again, therefore, away fror® a realization of

nate systems eventually used in this section is provided in Ch 2, Hughes and Gayl X X i
[163]. the equivalence in Aksentid®0].

In (5.35, V2 is the Laplacian im and 6 coordinates. Further
becauseV is harmonic inr, 6, andz, V2V =—3*¥/§z%, a
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Fig. 23 Singularity exponents for varying wedge angles

all for 0<r<« (see Fig. 24 for coordinates The homoge-
neous part o=0) of this punch problem has a dual or
equivalent crack problem. The latter has a full elastic space
with a crack on thexy plane wheng/2<|6|<, a crack
ligament in the same plane whés| < ¢/2 (Fig. 220). Under
symmetric loadingd-, this crack configuration can be treated
as a half-space with boundary conditions ag5r89 with
UOZO.

For either configuration, the potential representation given
in Green and Zernfl67] reduces analysis of the singulari-
ties present to the determination of those attending a single
harmonic function¥, with ¥ =0 within the surface sector,
dW/9z=0 without. This is a relatively simple 3D problem.
Consequently, and also because of the multiple physical in-

(b) terpretations harmonic functions admit to, this problem has

been the subject of quite a number of investigations. In chro-
Fig. 22 _a) Rigid punch with a wedge-shaped flat base pressed i%logical order, these include: Galia71], Rvachev[172),
an elastic half-spacé) dual crack problem Noble [173], Aleksandrov and Babeshk§l74], Bazant
[175], Walden[176], Morrison and Lewis[177], Brothers

Another instance of the second class of 3D geometriEk?8l, Keer and Parihaf179], loakimidis [180], Takakuda
involves the elastic half-space again, but this time under 381, Xu and Kundu[182], and Glushkov, Glushkova, and
flat rigid punch on the surface sect®ig. 223). The punch is Lapina[183]. The means of analysis in these references vary
frictionless or lubricated, and indents the half-space by &i®m primarily numerical to largely analytical. There is gen-
amountu,. Hence in this problem, in general, stresses afally good agreement as to the stress singularities unearthed
displacements are sought throughout the half-space satisfjth these means betwe¢h73], [175-181, and[183].
ing: the D field equations of elasticityand theboundary The analysis that stands out in its efforts to verify singu-
conditions on z=0, larity exponents is Morrison and Lew{d.77]. Therein, in
- - addition to comparing with a full set of earlier analyses, two
U= —Up for —¢2<6</2 independent approaches are employed to check results.

_ - These two agree to typically within 0.1%. Furthermore, sub-
0,=0 for g2<|o|=m (5-39) sequent analyses in Brothdrk78], Keer and Parihafl179],

Ty, =Tx=0 for —m<f=mw and Takakudd181] all display excellent agreement with

Elastic solid
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singularity exponents calculated in Morrison and Lewis
[177] (to within 1%). Accordingly these are the results sum-
marized here.

Singularity exponents for varying wedge angleg are
presented in Fig. 23. Thergis as in

Stress-free faces

o] =0(r7?) asr—0 (5.40)
z=0

for — /2< 6< /2. For =2 there is no singularity ¢
=0). This is as it should be when the punch indents the
entire half-space surface. Fgr=, y=1/2. This, in con-
junction with the 6-dependence ino, on z=0, realizes
inverse-square-root singularities as the edges of the punch
are approached. That is, for example,

g ol T ey e

These inverse-square-root singularities on the edges of the Fig. 24 Three-dimensional reentrant corner
punch are also present for all wedge angles 2. Away
from O, they represent a further demonstration of the

equivalence with plane strain response of Aksen{&0]. The adhering punch problem is less tractable than the fric-
Of course, the dual crack problem has the same singulggnless case, and leads to complex singularity exponents.
ity exponents as shown for the frictionless punch in Fig. 2%he real part of such exponents is included in Fig. 23 as a
In contrast to the 2D situation, however, its antisymmetrigroken line. For & p=<45°, these results are from Parihar
counterpart does not necessarily share the same exponegig. Keer[185]: for a):goo, from Brothers[178]. These
This antisymmetric crack problem can also be treated asgponents are for=0.3. Forv=0.5, results for the adhering
half-space problem. Then the boundary conditions are; orhunch are the same as for the frictionless case. For ather

Elastic solid

=0, see Parihar and Ke¢i85], which also gives the imaginary
parts of exponents. While the magnitude of the real part is
u,=u,=0 for— dI2< 6<pI2 less than the singularity exponent for the frictionless case in

the range & ¢$<90° in Fig. 23, the oscillatory nature at-
tending these complex exponents makes these singularities
(5.42) arguably more pathological. Again, at the edges of the punch
(60— = ¢/2), plane strain response occurs. That is, inverse-
Ty~ Tx,=0 for ¢/2<|f|< square-root singularities with oscillatory multipliers as in
Abramov|[186].
all for 0<<r<o. Associated singularity exponents are calcu- Qur final instance of the second class of 3D geometries
lated in Parihar and Ke¢84]. These exponents depend Ofinyolves an elastic solid with a3 reentrant corner When
Poisson’s ratio. For=0, they are the same as for the symthis corner has faces which are perpendicular to one another,
metric crack. Forv#0, they differ. Exponents for=0.5 the configuration is tantamount to removing an octant from a
differ most and are plotted in Fig. 23 with a dotted curvey|| elastic space(Fig. 24; sometimes termed the Fichera
EXpOI’lentS forr=0.3 are also giVen in Parihar and Kee(/erte)é_ This geometry can be viewed as a Wedge with a
[184]. vertex with an angle of 8/2 and which follows a path which
A further configuration involving the wedge-shapedyrns abruptly throughw/2 at O. Hence it qualifies for our

punch takes the punch to adhere to the half-space rather t8g@Bond class. When the corner is stress free, the boundary
to allow frictionless slip. Then the boundary conditions be-gnditions are:

come, onz=0,

o,=0 for —w<bO=w

Ox=Tyxy=T,x=0 at x=0 for y>0 and z>0
U,=—Up, U=U,=0, for —@/2<0< /2

oy=T1,,=Tyy=0 at y=0 for x>0 and z>0 (5.44)
0,=Ty=Tx=0 for ¢l2<|f|<m 643 4,=7,=7,=0 atz=0 for x>0 and y>0
all for 0<r<. This punch problem also has a dual cracwhere the coordinate system used is as in Fig. 24. The domi-
problem. The latter is for an interface crack with one mat@&ant singularities that can be presenafor this stress-free
rial being rigid. corner are estimated in Abdel-Messieh and That¢hé&i],
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Schmitz, Volk, and Wendlanfl188], and Glushkov, Glush- rily numerical ones. We summarize the singularity so found
kova, and Laping183]. There is good agreement betweenext, then offer some comments on other analyses that might
the first and third sources of numerical values of singularityppear to disagree with it to varying degrees.

exponents. For ranging from 0.2 to 0.5, dominant singular- - For %= 7/2 in Fig. 21, the crack front coincides with the
ity exponents from both sources exceed 0.58. This is Stro”ﬁh%rgativez axis. At the outset. then. we note that z<0 the

than the corre.spond.ing - reentrant cormdominant Y 3D crack of Fig. 21 belongs to our first class of 3D geom-
_.0'46)'. Two—d|men5|onal plane strain an_d antiplane Shegt'}ies. Thus AksentiafB0] applies and the stress singularity
singularities can be expected to be possible away fom

(from Aksentian[90]). for 2D plane strain should result at such locations. That is,

o=0(r"Y?) asr—0 for z<0 (5.48)
5.3 Three-dimensional geometries with crack-surface ) ) )
intersections wherein o continues as any stress component and the

L . . radial coordinate in Fig. 21. It follows that any investigation
As an initial instance of thehird class of3D geometrieswe of the singular response &t should include the singularity

consider an elastic half-space loaded transversely to a Crﬂﬁ:lf5 48 if the crack front is approached away from
within it, with the crack intersecting the half-space’s free Returning attention to the singular response righDat

sg;ftac?h(_Flg. ?fj;.c(\aNaet l?_e?]ltnavr\]lltlhy\/ her;zthﬁ I(;_raclé ];rOS:]:jn;rer'the investigation that has led to a clear identification of stress
Sects this su '9 gla /2 in Fig. 21). ingularity there is Bentherl94]. In [194], stresses are as-

. . .S
Mode | loading, symmetry enables attention to be confin le i herical pol o
just a quarter-spaceyt0, z<0 in Fig. 21. Hence in this e; msv(ijtkfo be separable in spherical polar coordinéeg:

problem, in general, stresses and displacements are sought
throughout the quarter-space satisfying: tHe 8eld equa-

tions of elasticity; stress-free crack conditiona the crack o=p "1(0)g(y) as p—0 (5.49)
flank, Using Boussinesg-Papkovich-Neuber potentials then enables
the 3D field equations of elasticity to be complied with and
Oy=Ty;=Txy=0 0on y=0 (5.45) vyields trigonometric functions fof(6), associated Legendre

K functions forg(y). Suitably selecting and combining these
" solutions satisfies exactly the symmetry conditiqbs46)
(5.46) and the stress-free crack conditiais45. The only remain-
ing conditions, the stress-free surface conditighd?), are
for x<0 and z<0; and free-surface conditionn the then satisfied approximately with sums of series of solutions

for x>0 andz<0; symmetry conditionahead of the crac

v=0, 7,,=7,=0, ony=0

quarter-space surface, complying with all other requirementsee[194] for details
of the numerical method adopted to this gridence, largely
0,=Tz=Ty,=0 0on z=0 (5.47) an analytical approach which could be viewed as an exten-

for all x and fory>0 (see Fig. 21 for the rectangular coorSion to three dimensions of that in Willianpg] for two di-
dinate system us@dAs this particular 3D configuration is MeNSIONS.
going to merit extensive discussion, hereafter we simply Results recove5.48 on the crack front away fror® as
term itthe 3D crack problem they should. They also recover the plane strain stresses with
Over the years, there have been numerous contributiondRgir inverse-square-root singularityy<1/2) when »=0,
the literature which address various aspects of the 3D crdéie one value of Poisson’s ratio for which plane strain
problem—see Panasyuk, Andrejkiv, and Stadfti89,19 Stresses satisfy the stress-free surface conditions. For other
for reviews which together cite some 500 related reference@lues ofv, y<<1/2 and the singularity is weaker. This gen-
Focusing on singularity identification at the crack-surface iral tend ofy=1/2 for v=0 with y<1/2 for »>0 is con-
tersection point © in Fig. 21), Sih[191] provides a review firmed in a number of investigations subsequent to Benthem
through the 1970s. In chronological order, contributions dd94]: Bazant and Estenssorfl95-197, Benthem[199],
this aspect since include: Folif$92], Kawai, Fujitani, and Yamada and Okumurg200], Burton et al[201], Takakuda
Kumagai [193], Benthem[194], Baznt and Estenssoro[181], Shaofu, Xing, and Qingzhi202], Shivakumar and
[195-197, Sinclair[198], Benthen{199], Yamada and Oku- Raju [203], Barsoum and Chef205], Ghahremani206],
mura [200], Burton et al[201], Takakuda[181], Shaofu, and Glushkov et dl183].
Xing, and Qingzhi[202], Shivakumar and Raj{203], Zhu The precise values of the singularity exponenfor v
[204], Barsoum and Che[205], Ghahreman[206], Leung >0 in Benthem[194] are confirmed in Benthefil99] with
and Su[207,208, Su and Suri209], and Glushkov, Glush- what is in essence a direct numerical analysis. The indepen-
kova, and Lapin&183]. Together these papers are testimon§fent approach in Benthef99] leads to values that typically
to the challenge of the preceding asymptotic problem. Whitffer by 1/3% and have a maximum difference 0}%.
none of these papers solves the 3D crack problem completElyrther confirmation of the precise valuespfor v>0 in
analytically and correctly for all values of Poisson’s ratio, 8enthem[194] is provided by the analyses in Ba#t and
stress singularity at the intersection point has been cleaHgtenssoro[195,197, Takakuda[181], and Ghahremani
identified at this time. This identification relies on severdR06]. The average difference between numerical values
papers, and on both largely analytical treatments and pringaven in the first three references and corresponding values
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1.0 — T T T terization of the stress and displacement fields there. In terms
of the spherical polar coordinates of Fig. 21, the first has

c=0(p) as p—>0 @ UZ:Kcos¢cos((1+ 2v)(m— ¢))cosgas p—0 (5.50)

2v H
0.8 Antisymmetry 7] p=iNpsing
B | whereK is a constantindependent op, ¢, and ), while the
Symmetry second has
0.6 - 7 o=0(p Y272"), u=0(p*?7?"), as p—0 (5.51)

- whereu is any displacement component. Away from the

, crack-surface intersection poir{§.50 recovers the inverse-
04k i square-root singularity that must occur at the crack front
(that is, for y—m, p#0). For »=0, (5.50 recovers an

- : - inverse-square-root singularity as—0, the same singular
character as in Benthefil94]. For v+ 0, the singularity in
02 < (5.50 is stronger. This is in contrast to the singularity in

\ v Benthem[194]. Indeed forv>1/4, even the displacements

B 7 are unbounded. This has led to some discussion: Benthem
and Koiter[211], Folias[212,213.

Singularity exponent, y

0.0 Py 0'1 : : ! Unbounded displacements are even less physically appro-
' ' 0.2 0.3 0.4 0.5 priate than singular stresses. While singular fields with un-
Poisson’s ratio, v bounded displacements are possible for the 2D crack, fortu-

nately one can prove that they need never participatethe
completeness argument in Gregdiyi]). Unfortunately, no
such proof currently exists for 3D cracks. Therefore, the un-
bounded displacements of Folid®2] cannot be ruled out as
possible participants in the 3D crack problem, despite their

in Benthem[194] is less than 1/20%, while the maximumIaCk of physical appeal. . - . L
difference is less than 1/10%. In the fourth reference, a 1here is, though, a valid objection to the singularity given

graphical comparison is made and shows all thealues in N Folias[192] in its present form. By virtue of=0 being
Benthem[194] lying on ay-value curve computed in Ghahr-free of shear tractions, the third stress equation of equilib-
emani[206]. All told, there is now excellent confirmation ofrium hasdo,/9z=0 at z=0. Equivalently, in terms of the
the singularity exponents in Benthdt94]. Accordingly, we spherical polar coordinates of Fig. 23,
present these singularity exponents here in Fig. 25.
While, at this time, there would appear to be no doubt as l EZO at =2 (5.52)
to the existence of a stress singularity of the form®#9 p Iy '
with exponents as in Fig. 25, this does not mean that th fom (5.50
cannot be other singular fields for the 3D crack problem. No ’
completeness argument is advanced in the literature forgo, sinmTv 0
stresses of the form df.49: Absent such, other singulari- ;= KT\/—COS§ at ¢=ml2 (5.53)
ties are not precluded. Conversely, absent a companion com- pNP
pleteness argument, another form of singularity for the 3Bside for the case’=0, then, equilibrium is not complied
crack problem does not invalidate the singularity identifiedith by the explicit singular stress given in Foligk92]. Of
in Benthem[194]. course, the method of solution construction adopteld 82
There are, in fact, quite a number of other approachesassures satisfaction of the equilibrium equations by the stress
the literature aimed at identifying alternative stress singulafields in toto. Thus there must be further contributions to the
ties to that of Bentheni194]. We review these efforts in stress field in Folia$192], not to date explicitly extracted,
chronological order next. that combine with(5.50 to restore this compliance. In order
Folias[192] attempts the ambitious task of finding an anaeo do this, these further contributions must share the same
lytical solution for a truly 3D,global, crack configuration. dependence op as in(5.50. Consequently there is the pos-
This configuration entails a through crack, in a plate of finiteibility they may completely remove singular fields which
thickness, with crack fronts orthogonal to the stress-frdehave as ir{5.51). Not to say that this has to happen, just
plate faces and under transverse far-field tension. In the that it could. As a result, Foligd92] cannot be relied on for
cinity of where one of the crack fronts intersects a plate facgingularity identification in the 3D crack problem.
the 3D crack problem is contained. The analysis employs the Kawai, Fujitani, and Kumagdil93] attempts to identify
symbolic method of Lur'eSection 3.2[210]). Results in- local stress singularities for the 3D crack problem. This pa-
clude an explicit expression for the singular parbgfat the per assumes the stresses can be represented &g dand
crack-surface intersection, as well as an asymptotic char&@enthem [194]. Thereafter it determines forms for the

Fig. 25 Singularity exponents for varying Poisson’s ratios for
quarter-plane crack in an elastic half-space

QD
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stresses and displacements so that the field equations of elasFhe absence of the plane strain singularity for 0 does
ticity are complied with: These forms are similar to those inot necessarily invalidate a singularity identified for the 3D
Benthem[194]. Then it proceeds to satisfy the symmetrgrack. While completenes&Gregory [11]) and uniqueness
conditions(5.46 and the free-surface conditiori5.47) ex- (Knowles and Pucif12]) mean that any loading of the 3D
actly, the stress-free crack conditio(®45 approximately: crack which is independent af must produce these plane
This is in contrast to Bentherd94] which satisfies the free- strain fields whenv=0, this does not have to be the case
surface conditions approximately. Results include one singuhen loading is not independent bf

larity which is similar to that in Bentherh194] in that it The real objection to the simple analysis in Sinc[di®§]
shares diminishing strength with increasindpaving started lies in its satisfaction of the free-surface conditions. Bound-
from an inverse-square-root singularity wher0. Expo- ary conditions are known to effect the nature of stress singu-
nent values for this singularity, however, do differ apprecidarities considerably in elasticity. Hence, satisfying the free-
bly from those in[194] (by 40% whenv=1/2). Results also surface conditions in only an asymptotic sense is quite likely
include a stress singularity which is stronger than an inverge- change the nature of any singularity found. Thus, while
square-root singularity for all values of If a valid result, results in Sinclaif{198] may indicate a possible trend for
this last would represent an additional and distinctly differesingularities in the 3D crack problem, they fall far short of
singularity from that identified in Benthefd94]. actually identifying a possible stress singularity.

The issue of validity in Kawai et dl193] stems from its Shivakumar and Raj[203] attempts to identify two local
use of series of associated Legendre functions to satisfy gteess singularities for the 3D crack problem. In this paper
stress-free crack conditions. In terms of the spherical poldue singular stresses are assumed to admit representation by
coordinates of Fig. 21, the series involve, for example,

PN A (—cosy)=O((m—y)* 2" 2) as y—m o=F(B.r - G(y0)p77 as 10 or p=0 (5.56)

(5.54) '

for n=1,2,..., and\<2.3° Stresses with such terms cannowhereF and G are continuous functior%.Analysis is via

converge to zero on a plane includirig= =. Moreover, such finite elements with fitting used to estimate singularities

terms lead to singular stress behavior at the crack frgnt Present. This fitting is undertaken for each term(#56

— ) away from the crack-surface intersection that is knowseparately. Away from the crack-surface, results recover the

not to occur. Hence, the stress singularities in Kawai et Hlverse-square-root singularity that must occur. ker0

[193] need to have it established that they are completdfjey recover the known plane strain singularigutomati-

free of such terms in order for them to be admissible. To dagally, by the superposition employed-or v—0, they indi-

this would not appear to have been done. cate that the functior- is zero or negligibly small. Fow
Sinclair[198] attempts to identify local stress singularities> 0, they also estimate singularity exponents which are in

for the 3D crack problem. This paper assumes that stres§69d agreement with Benthei94] (average difference

are separable in cylindrical polar coordinates. It satisfies tB&%, maximum differenc&/2%).

field equations of elasticity exactly with forms comprised of Zhu[204] attempts to identify local stress singularities for

elementary functions. It also satisfies the stress-free crdbr 3D crack problem. This paper assumes stresses are sepa-

and symmetry conditiong5.45 and (5.46), exactly. How- rable in cylindrical polar coordinates. Analysis is via a com-

ever, it only attempts to satisfy the free-surface conditiofdnation of two solutions. The first is for a crack in plane

(5.47 for o, with a term which is itself asymptotically zerostrain. The second removes surface tractiorzs= from the

as the crack tip on the surface is approacttee actual re- first. It is derived from a single harmonic potentigfter

sidual beingO(r®? asr—0 thereon. Results for the domi- Section 5.7, Green and Zerfi67]). The 3D aspects of the

nant singularity have analysis are limited to the plare=0. Within this plane, all
field equations and boundary conditions in the 3D crack
5=0(z%/\r) asr—0 (5.55) problem are satisfied. Unfortunately, in meeting the shear-

free conditions on the crack flanks, continuity of crack flank
whereing is any stress component other thag andr,,, displacements is required in the second solution. When sur-
these last being nonsingulésee Fig. 21 for the cylindrical face tractions are applied to a cracked half-space, such con-
polar coordinates us@dAway from the crack-surface inter-tinuity is generally not the case. Hence the analysis is de-
section point, the appropriate inverse-square-root singularigonstrably incomplete. Away from the crack-surface
is recovered at the crack front. For= 0, the known inverse- intersection point, the inverse-square-root singularity that
square-root singularity is not recovered in the surface atmust occur is recovered automatically by construction. For
=0. The general trend of a weakening of singular response 0, the known plane strain singularity is likewise recov-
as the free surface is approached is reflecte(bif5), but ered. Forv—0, results show a persistence of the inverse-
now by a reducing singularity coefficient rather than a redugquare-root singularity in the free surfacezat0. The coef-
ing singularity exponent. ficient of the singularity is reduced from that away from the

30see, eg, Ch 8, Abramowitz and Stedur89], for the asymptotic behavior given in Slobserve, therefore, that the second term(Sr56 is not the same as in Benthem
(5.54. [194]. In [194], G(¢,6) contains terms which af®((7— ¢) "3 asy— .
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surface by a factor of (£ v—2v?). This factor is 1 when approach in Su and SU209] were to be rectified, it would
v=0, appropriately, 5/8 whem=1/4, and 0 wherv=1/2.  appear that this paper would lead to the first essentially ana-
While all of analysis in ZhJ204] is correct, the 3D so- Iyt.ica_l solution for a.singularity in the 3D crack problem. At
lution found is really only valid in the surface=0. If in- this time, however, it cannot be accepted as such.
stead it held for al in the half-space, it would be possible " sum for the 3D crack problem, the current state of
to simply take the stresses it produced on the surface of§earch' fmdmgs is as.follows. Away from the crack'-surfac.e
subregion within the half-space as prescribing tractioff&l€rSection point, an inverse-square-root stress singularity
thereon and so pose a problem for which the fields in zIFCUrs: and only it occurs. “Away” includes arbitrarily close

[204] are applicable. Absent a solution for other than0, tﬁ th3er0|nt,kbut r;)?t atit C(:)nsequen(';ly, all slngular!t@s for:
however, there is no guarantee that the fields in F204] the oL crack problem may be viewed as ¢ aractgnzmg the
articipation of this inverse-square-root singularity as the

ever participate in an actual 3D crack problem. They coulg; ; ) hed. Vi 4 in this liaht Benth
though, in which case they would represent an additional a € surtace 1s approached. viewed in this ight, benthem
194] provides the only truly confirmed singularity identified

complementary singularity to that found in Benth€h94]. o dat ith
Leung and SU207] attempts to identify local stress sin- 0 date, wi

gularities for the 3D crack problem. This paper superimposes 12—y
the singular crack-tip stresses in plane strain with stressesoc=0 \/—1// as p—0 (5.57)
psin

that are assumed to be separable in spherical polar coordi-

nates. The latter have to have an inverse-square-root sinfi{5.57), the spherical polar coordinates are as in Fig. 21
larity to effect the removal of the stresses from the former qghd the singularity exponent as in Fig. 25. Forr=0, y

the surface az=0. They are analyzed with finite elements=1/2. Then the crack-tip singularity for plane strain applies.
By construction, appropriate singular behavior results awgpr 0, y<1/2. Hence the participation of the inverse-
from the crack-surface intersection point and for 0. For square-root singularity goes to zero in the free surface for the
v—0, a drop in the coefficient of the inverse-square-rogingularity identified in Bentherfil94]. There may be other
singularity is indicated at the free surface. singularities for the 3D crack, some of which may not have

Leung and SU208] attempts the same identification ashis participation go to zero in the free surface. The existence
[207], but primarily by analytical means rather than numerbpf these alternative singularities would not invalidate the sin-
cal. After superposing the plane strain fields, the approaghlarity in Benthen{194]. As of now, any such other singu-
for the residual problem follows that in Zi§@204] and uses a larities have yet to be properly identified.
single harmonic potential. In fact, the approach in Leung and A further instance of the third class of 3D geometries is
Su [208] could be interpreted as an attempt to extend thRe antisymmetric counterpart of the 3D crack problem.
results of Zhu 204 for the surface into the interior. In mak-Herein the formulation is the same as for the 3D crack prob-
ing this attempt, however, the approach follows that ilem except that the symmetry conditiorf5.46) are ex-
Kawai et al[193] rather than that in Benthefl94]. As a changed for antisymmetry conditions:
result, in its present form it suffers from the same lack of
convergence and from the introduction of inadmissible sin- Y=W=0. oy=0. on'y=0 (5.58)
gular stresses on the crack front. Consequently, the result$dnx<0 andz<0, whereu andw are displacements in the
Leung and Suy208] cannot be accepted at this time. andz directions, respectively.

Su and Surj209] attempts to identify local stress singu- Bentherm[199] analyzes the antisymmetric 3D crack via a
larities in a global configuration entailing a through crack ifinite difference approach. Singularity exponents appear to
a plate(the same geometry as in Foligs92]). This paper have converged to within about 2% in Benthgh99]. Two
employs an interesting decomposition of the fields involvastanches of singularity exponents for varyingre identified
into a plane stress state, a shear stress state, and a Papkowigithis means. One branch is for a stronger singularity than
Fadle state. Each of these states is assumed to be separalileeisymmetric case, one weaker. The exponents for the stron-
cylindrical polar coordinates. Series of solutions are enger singularity are confirmed in Bamt and Estenssoro
ployed. The analysis is analytical with the minor exceptiof196,197 (typically to within 2%9. They are also confirmed
of the routine numerical determination of the eigenvalués Ghahremi[206]. Exponents for both the stronger and
used in the Papkovich-Fadle expansion. Results recover theaker singularities from Bentheh99] are included in Fig.
appropriate singular behavior away from the crack-surfa@® for varying Poisson’s ratios.
intersection point and for=0. For»>0, the dominant sin-  Alternative singularities may exist for the antisymmetric
gular character identified is the same ag5rb5. As noted in 3D crack problem. Again these would not invalidate those
(5.59 et seq,r4, and 7, are nonsingular. Hence they are noidentified in Benthenj199]. An indication of a possibility in
explicitly given in Su and Surf209]. They are needed, this regard is given in Meda et g214] which uses the very
though, to ensure satisfaction of the equilibrium equations bynited approach of Sinclaif198] to arrive at singular char-
the singular stress components. Unfortunately, when thesder as in5.55. The same singular character is obtained by
shear stress components are derived from the displacemetifferent means in Appendix I, Su and S[@09], but insuf-
given in Appendix | of Su and SufR09], it transpires that ficient details are furnished therein to enable checking.
they are not zero on the plate faces. This is in violation of the As two last instances of the third class of 3D geometries,
free-surface conditions. If this shortcoming in the promisinge consider two further crack-intersection configurations.
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10 — | | : | Some remarks on the effects of other field equations on
GCrack flank singularities are given in Part I, Section 2.1. These concern
L =0(p™) as p—>0 - ; - S .

Wi ° the possible removal of stress singularities by relaxing any of
the three linearizations of classical elasticity. These three lin-
08 Crack ligament — earizations are: the small stress assumption that stresses re-
main below yield levels, the small strain assumption that
strains are linearly related to displacement gradients, and the

-
‘g | small deflection assumption that the loads act in their entirety
§ 0.6~ 3D crack plane on the undeformed state. Relaxing the first two linearizations
3 B B entails switching to the field equations@fstoplasticityand
% large strain elasticity respectively. A relaxation of the third
2 o4l _ can be made by applying the field equations of classical elas-
& ticity, together with loading conditiongn deformed states
L — instead of undeformed. For each of these modifications to the
field equations, analysis is nonlinear and consequently less
02 — tractable than that for classical elasticity. The general finding

of such analysis is that relaxing any of the three linearizing
assumptions of classical elasticity does lead to a different
singular character. Further, typically the resulting singular
0.0 : : . Character is less nonphysicdbr example, the replacement
0° 90° 180 ; ; " : ;
_ ~ of oscillatory stress singularities for the interface crack with
Intersection angle, ¢ . . . . . L
a nonoscillatory singularily Occasionally a singularity is
Fig. 26 Singularity exponents for varying angles of intersectiofiV&" r_emovedfor_ examp_le, the s!n_gul_arlty at an adhesive
for a symmetrically-loaded crack in an elastic half-space butt joint present in classical elasticity is absent from a large
strain treatment>? However, the great majority of singulari-
ties in classical elasticity persist, albeit in altered forms, for
The first further crack-intersection configuration entails cradkly of these modifications to the field equations. Thus none
fronts which are not orthogonal to the free surfacg (Of these modifications is really successful when it comes to
# /2 in Fig. 21). Motivated by a search for an energy refeémoving stress singularities from classical elasticity.
lease rate3, satisfying 0<G,< in the free surface, Bant Here we consider some other changes to the field equa-
and Estenssor¢195-197 seek an anglep such thaty tions of classical elasticity. We distinguish these modifica-
=1/2. This leads tap>m/2 for the symmetric case. Valuestions as follows: changes in the stress equations of equilib-
of such'g are given in Baant and Estenssord97] for » rium, changes in the stress-displacement relations, and
ranging from 0.0 to 0.4. These values are confirmed in Bughanges to both. We consider each type of modification in
ton et al[201] and Takakud#181] (typically agreement is to turn next.
within 1%). The antisymmetric case is also treated ind@#z ~ As a first simple change to the stress equations of equi-
and Estenssorfl97]. This leads top< /2. Singularity ex- librium, we consider the effects of introducirtgpdy-force
ponents other thary=1/2 are tabulated in Takakuda81] fields heretofore taken as null. Then, for example, the first
for 0<p=<1/2 and otherp under symmetric loading. Far equilibrium equation for in-plane loading i2.2) becomes
=0.0, 0.4, these results are illustrated in Fig. 26. go 1
The second and final, further, crack-surface intersection —* _ —
configuration is as for the 3D crack problem but now with " I d¢ r
two materials comprising the half-space. Singularities f%hereF
this 3D interface crack are identified in Ba# and Estens- What is
soro[197], Barsoum and Che[R05], and Ghahremani and
Shih[215].

Ty Or—O

’+F,=0 (5.59)

. is the radial component of the body-force field.
apparent frons.59 is that for body forces to effect
stress singularities which behave @¢r~?) asr—0, they
themselves have to behave @¢r ~*1). Such body forces

i i would not seem likely to be needed in practice. Hence stress
54 Other field equations singularities in elasticity can be expected to be unaffected by
While it falls outside the stress singularities in classical elagie presence of body-force fieldfs.

ticity reviewed so far, it is nonetheless appropriate in closing There is one possible exception to the foregoing in two
this review to offer a few comments on the effects of oth&fimensions. This is the line-load body force. For such a
field equations on singularities. It is appropriate because thgdy-force field,

singularities attending other field equations are quite often

directly related to those in classical elasticity. The intent here Fr=Fa/r, F4=0 (5.60)

is to indicate this sort of connection, rather than extensively

explore it. Accordingly, references cited here are by way &hs explained in Part I, Section 2.1, the introduction of perfect plasticity does not
example, rather than anything approaching a comprehens’,;SZ#y qualify as a modification that removes a singularity.

T ate bending singularities are similarly unaffected by the presence of plate face
|IStIng. loading: see Sections 4.3 and 4.4.
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whereF 4 is a force per unit area. Then directly frof5.59 Turning to changes to the stress-displacement relations,

and the second aP.2), we first consider the effects of introducing temperature
fields. The resulting field equations diermoelasticitycan

(5-61)  pe couched so that they differ from those of classical elastic-

whereinr, is some characterizing radius introduced to edy ©Nly in the stress-displacement relatiosee, eg, Section
sure dimensional consistency. The field(5161) also satis- 1.3, Nowacki[219]). The same field equations can be recast

fies the stress equations of compatibility: It therefore conySing the Duhamel-Neumann analog§ection 1.9[219)).

plies with all the field equations of elasticity. Analogously ir;l’hen they reveal that the singularities in stationary ther-

three dimensions, a point-load body force leads to a Strégg)elasticity are the same as in classical elasticity provided
singularity which behaves @(p~1) asp— 0. Aside from two possible additional sources of singularity are admitted.
like instances, however, stress singularities in elasticity cdi€ first additional source is the action of a normal traction
be expected to be the same with body forces as without, ©f magnitudecT, wherecy is a material constaripropor-

As a second change to the stress equations of equilibrilign@l to the material’s linear coefficient of thermal expan-
we consider the introduction of inertial terms. Then thesiOn and its bulk modulysand T is the temperature field
equations becomequations of motianThis change can be present. The second additional source is an effective body-

viewed as mathematically equivalent to introducing a bod)ff-’rce field. In two dimensions, the latter can be expressed by

Ur:Ug:_FAln(r/rc); T”;:O

force field. For example, i5.59, set oT cr dT
a2u Fr:—CT&—r, FGZ—T% (564)
Fir=—pm—2 (5.62)
T PmT ' whereF, is the #-component of the body force. It follows

_ _ _ _ that, in two dimensions, the additional singularities so pro-
whereinpy, is the mass density artds time. Then the equa- duced come from constant normal tractions and the possibil-
tion of motion in the radial direction is recovered. S|m|lar|yty Of a |ine_source tempera‘[ure f|e|d The first can produce
the equation of motion in the angular direction can be recopsgarithmic singularities as in Section 2.4. The second entails
ered. Accordingly we can expect singularities attending of O(Inr) asr—0, hence a line-load body force and loga-
equations of motion to be similar to those for elastostati¢ghmic singular stresses as {%.61). In three dimensions
with body forces. _ ~ analogous results hold. For an elastic half-space with a con-

As an initial instance of dynamic response, we considgfant temperature on a surface rectangle and zero temperature
the case otibrations of elastic media. If the vibratory mo- ejsewhere on the surface, stresses can be obtained from Sec-
tion has frequency, then one may take tion 2.3,[219]. These stresses have logarithmic singularities

R . at the corners of the rectandlef, [164]). At a point source in
Ur=0r(r, O)sinot (5.63) three dimensions, the temperature and stresse©gpe ')

Assuming the same vibratory dependence for the other S »—0 (S€e, g, Section 2.1§219). In addition, all the
placement component and the stresses enables sind the other singularities in classical elasticity can be present in
;i35

time dependence to be factored out of the equations of n{g_ermgelastlcnﬁ. o _

tion. Then we have exactly the same equations as for theA_dlfferent type of modlflc_at|on to t_he stress_—d|splacement

introduction of body forces. Consequently no changes fglations results from varying elastic moduli. Three such

stress singularities from those in classical elasticity are to ¥@riations are entertained to a limited degree here: variations

expected when vibrations are introduced. That this is so\dth time, variations with position, and variations with direc-

demonstrated for antiplane shear in Saggeti]. It is fur- t1ON- , o

ther demonstrated for out-of-plane bending within fourth- E!astic moduli can vary with time so as to reflect the

order theory in Leissa, McGee, and Huddg1], and within physical phenomena of creep and relaxation. When sissh

sixth-order theory in Huang, McGee, and Lei§&84].3 coelastic variations are consistent with the constraints
For the more general (‘:ase ela’stodynamicresponse needed for the correspondence principle to hold, the singular

wherein motion is transitory rather than vibratory, the sanfdaracter in classical elasticity carries over to viscoelasticity.

sort of correspondence should occur whenever the stress Jifje singular stresses in elasticity are independent of elastic

displacement fields are separable in their spatial and teme‘?d““' identical singular stresses occur in viscoelasticity. If

ral dependences. This separable nature need not be withfg. Singular stresses in elasticity are dependent on elastic
spect to a stationary coordinate system for a correspondefl@dull, singular stresses have the same singularity strength
to hold. A demonstration is given in Achenbach and &az © €xponentin viscoelasticity. Now, though, the participation
[218] for propagating cracks. For both antiplane shear a different parts of the singularity coefficient can vary in
plane strain, the inverse-square-root stress singularity of eld§férent ways with time. A statement of the correspondence
tostatics is recovered. Now, though, thelependence is only principle and a demonstration of its implications for the sin-
the same as the elastostatic case in the limit as the spee@yf" Stresses attending a point load normal to a half-space

crack propagation goes to zero.
35The situation is more complex than this limited discussion would indicate when
multiple materials are present in thermoelasticity. Then the added discontinuities at-
S4While the inclusion of vibratory response leaves singularities unaltered, the presetereding jumps in thermal conductivities can have associated stress singularities. See,
of singularities can alter vibratory response: see Leig44]. for example, Yan and Tinf220] and Yang and Mung221].
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are provided in Le§222]. Further demonstrations of the cor-gularities which increase the singular character over that
respondence between elasticity and viscoelasticity singulgtiund in classical elasticity. Occasionally additional singular
ties are given in Williamg¢223] for a crack. stresses can offset those in isotropic elasti6ify a bimate-

stants, Sections 3, 4.2, and 4.3 summarize the numerousj¢egiven in Ting[225].

lated studies in the literature for susthomogeneous elastic  aAs our last modification to the field equations, and one

media The general finding of these studies is that the intrqyhich effects both the stress equations of equilibrium and the
duction of additional discontinuities attending abrupdiress-displacement relations, we consider the introduction of
changes in elastic moduli increases both the occurrence %@@me stressesField equations for a linearized theory in-
the strength of stress singularities. This does not have to aﬂding couple stresses may be found in Muki and Sternberg
so, though. Occasionally the singularity associated with[826]. The general finding for such a theory is that the sin-
discontinuity already present in a configuration can be offsgfjarity strength remains the same as in classical theory for
by the singularity associated with an added discontinuity Bbrresponding stresses, but dependencedds modified.
elastic moduli(see, eg, the butt joint in Section 3.3 Demonstrations of this persistence of singular stresses are
When elastic moduli vary with position other than agiyen in Muki and Sternberf26] for the half-space under a
piecewise constants, there are relatively few studies in td&continuous shear traction, normal and tangential line-
literature. However, for the simple case of antiplane shearydlads. and a flat, lubricated, strip punch. A further demon-

is straightforward to bound the effects of a radial dependenggation is given in Sternberg and Mul227] for a crack in
of the shear modulus. Taking the shear modulus to vary gjane strain.

= po(r/re)® (5.65)

for |e|<1, provides two extremes. Far>0, u—0 asr
—0: Fore<0, u— asr—0. Then, following the analyti-
cal path laid out in Section 4.1, leads to

6 CONCLUDING REMARKS

In classical elasticity, stress singularities occur under point
loads, lineloads, and so on. They can also occur away from
any such concentrated loading. It is the occurrence of this
T € T & latter type of singularity that is reviewed here.
y=1- o 207 1- 2¢ 2 (5.66) When stress singularities occur away from concentrated
] ) ) loading, they do so in concert with a discontinuity: no dis-
as e—0, for the dominant singularity exponents for nong,ninuity, no singularity. Hence we term thediscontinuity
mixed, mixed problems, respectively. Hence the singularigf,qjarities The discontinuities for such singularities occur
exponent is reduced when the modulus softens to zero §, houndaries. In classical elasticity, these discontinuities en-
>0), and itis increased when the modulus stiffens to infinity; abrupt changes in boundary directions/boundary
(£<0). This type of response is consistent with findings igongitions/elastic moduli. In general, such discontinuities
general in this review, namely that increasing stiffness typing the possibility of singularities. In particular, step changes

cally increases singular character. It is, though, for an €t yniform tractions or first derivatives of displacements flag
treme variation in moduli. And it is not that dramatic giveng possibility of logarithmic singularities.

this extreme variation. This suggests that the dependence Ofrhe presence of a discontinuity, however, does not neces-
s_tress sm_gularmes on more realistic radial variations of e|a§arily mean that there is a stress singularity. For example, for
tic moduli may be slight if any. the in-plane loading of an angular elastic plate, there are no

To investigate this suggestion further, we take singularities when the vertex angle is less than 180°, despite

r the presence of a sharp corrisee Sections 2.1 and 2.For
n= o+ B (5.67) the same plate as a half-plane with a step pressure applied on
¢ its edge, there are no singularities, despite the presence of an

This choice requiresi, be taken as a series of separablabrupt change in boundary conditiot®ection 2.4. For the
functions with increasing powers of in implementing the same plate with one face clamped the other free, there are no
analytical approach in Section 4.1 instead of just a singsngularities when the vertex angle is less than @&£&ctions
separable term. Even so, the same results for exponentsafdeand 2.2 This last example is despite the presence of a
obtained as in Section 4(Liz, as in(5.66) with ¢=0). That sharp corner, and an abrupt change in boundary conditions,
is, the linear radial dependence of the shear modulus and an abrupt change in elastic modaliamped conditions
(5.67 leaves singularity exponents unchanged from those foeing attributable to attachment to a material with an infinite
a constant shear modulus. By a like means, the same re¥alting’s modulug Thus, while discontinuities flag possible
can be expected to hold for elastic plates in extension. stress singularities, they are not in themselves the real

The third and final variation in elastic moduli that wesources.
consider is to allow them to change with direction. Hence we The real sources of discontinuity singularities are discon-
admit anisotropiceffects. Ting[224], Chapter 9, furnishes atinuities in the stiffnesses in the cohesive or adhesive stress-
clear exposition of singularity identification in anisotropicseparation laws which underlie the constitutive relations of
elasticity, together with an extensive set of related referencetasticity. This may not be immediately apparent for some
The general finding is that the additional discontinuitiesingularities. Some further explanation is given in Part I,
which can attend anisotropy can have associated stress Siaetions 2 and 5.
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Table 16. State of the art of stress singularity identification in classical
elasticity

In-plane

Single material Bimaterial loading of an
Configuration Power Log Power Log elastic plate 3D
Plate :

- pending: 4th geometries
In-plane loading of a plate C C C o] de trgéo absent
Antiplane shear of a wedge  C c c c order tneory 3D verticies
Plate bending, 4th order theory C C c o]
Plate bending, 6th order theory c 0 o] 0] . .
Axisymmetric torsion C C C C Plate Axisymmetric
of a cylinder bending: 6th axial loading
Axisymmetric axial C c c o order theory aégu%rdc; o
loading at vertex v
Axisymmetric axial loading at C C C o] (@)
a cylindrical boundary
Three-dimensional Cc Cc C (o]

away from 3D vertex

Out-of-plane
shear of an
elastic wedge

In two dimensions, the various discontinuity singularities
actually identified to date in classical elasticity may be sum-
marized as follows. For any stress componen@as the sin-

S L. ; : 3D
gular point is approached, elasticity can have: ﬁ’gfggg"nmaitgc ge:brgzt;ites
_ Y circular L
o=0(r 7cognlInr))+O(r 7sin(ninr)) boundary 3D verticies

o=0(r 7Inr)+0O(r 7 (b)
o=0(r77) . ) . . .
Fig. 27 Classes of configurations that are effectively equivalent
o-=0rd(|n2 r)+ord(Inr) (6.1) with respect to singularity identificatior®) configurations equiva-
' lent to plates in extensioi) configurations equivalent to wedges in
o=ord(Inr) antiplane shear
o=0(Inr)

o=0(cog 77Inr))+0O(sin(7Inr)) possible presence. This is the reason they are separated out
asr—0, whereiny is the singularity exponent @y<1), from power singularities in Table 16. Of course, the presence
and 7 is the imaginary part of the eigenvalue involved. I®f either type of singularity needs to be recognized if one is
(6.1), O is associated with locally homogeneous boundaf9 avoid the futile exercise of stress-strength comparisons
conditions, ord with locally inhomogeneousrd is defined once either occurd,
in Part I, Section 1.2 For the former, the singularity may or  In Table 16, the following notation is adopted with respect
may not participate depending on other far-field boundaf9 the state-of-the-art of identifications:
conditions: hence th® notation. Typically, though, once
such a singularity is identified as possible, it does participate. C=largely closed, c=partly closed (6.2)

For the latter, the singularity’s participation is guaranteed by
the inhomogeneous part of the local boundary conditions: O=largely open, o=partly open
hence the ord notatioff. _

Numerous such singularities are identified in the literatuf8 (6-2, largely closed means there are few, if any, new
for classical elasticity. Table 16 summarizes the state-of-thangular configurations to be identified. Moreover, any such
art of these identifications for the various, essentially 2(€W configurations are not expected to occur often in prac-
configurations that are reviewed here and involve one or tii§€- [N contrast, partly closed means there are, in fact, quite
materials. a few more singular configurations to be identified. Further,

In Table 16,power singularitiesnclude the first three of IN (6-2, largely open means the great majority of singular
(6.1). For the most part, the singularities involved are as fPnfigurations have yet to be identified, whereas partly open
the third of (6.1). There are, though, quite a few instances ¢h€ans Justa majorty. _
singularities as in the first a.1). There are relatively few The bulk of S|_ngular|ty |dent_|f|cat|ons in the literature are
as in the second dB.1). In Table 16, thenlogarithmic sin- OF in-plane loading of an elastic plat8ections 2 and)3As
gularitiesinclude the fourth through sixth @6.1). These are 2 result, identification for this configuration is largely com-
all weaker than power singularities. Accordingly they can b_gete. The partly open area of log singularities in bimaterials

harder to detect absent an asymptotic appreciation of thii€XPlained in Section 3.3. While there are fewer singularity
identifications in the literature for antiplane shear, they are

36The last stress of6.1) is not strictly singular, being bounded &s-0. However, it is
undefined ag —0, and consequently shares some of the difficulties associated witirhe few known instances of the last(@.1) occurring are given at the end of Section
stress singularities. 2.2,
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nonetheless largely complet®ections 4.1 and 4 2Thisisa  [5]
consequence of analysis for this configuration being rela[-G]
tively simple.

These two configurations lead to singularity identifica-[7]
tions for a number of other configurations. The various way
they do this are illustrated in Fig. 27. Therein the following [9]
notation is used:

[10]
AE=asymptotically equivalent configuration (11
EM =eigenvalue equations match (6.3)

[12]

MA = mathematically analogous configuration

For further explanation, see Sections 4.3, 4.5, 5.1, and 533
Also in Fig. 27, an arrow with a solid line denotes that thei4
correspondence holds for both single materials and bimateri-
als, whereas one with a broken line just for single materiaﬁs]
(to date, anyway

There are a few singularity identifications for trimaterials[16]
These are mentioned in Sections 3.2 and 4.2. 17]

There are 3D configurations other than those of Table £6
and Fig. 27 for which singularities are identified. An indicat18l
tion of the state-of-the-art with respect to singularity identi-
fication for these configurations is given in Sections 5.2 ardg]
5.3.

A discussion of stress singularities for field equationgzo]
other than those of classical elasticity may be found in Sec-
tion 5.4. Typically, if a stress singularity occurs in classicaP!l
elasticity, singular stresses persist with other field equations.
Sometimes singularities persist with modified strength§22]
sometimes with the same. Examples of the former include
elastoplasticity and large straimonlineaj elasticity. Ex- [23]
amples of the latter include elastodynamics, viscoelasticite/,
thermoelasticity, and couple stress theory. 24]
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