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Stress singularities in classical elasticity—II: Asymptotic
identification

GB Sinclair
Department of Mechanical Engineering, Louisiana State University, Baton Rouge,
LA 70803-6413; sinclair@me.lsu.edu

This review article~Part II! is a sequel to an earlier one~Part I! that dealt with means of re-
moval and interpretation of stress singularities in elasticity, as well as their asymptotic and
numerical analysis. It reviews contributions to the literature that have actually effected
asymptotic identifications of possible stress singularities for specific configurations. For the
most part, attention is focused on 2D elastostatic configurations with constituent materials be-
ing homogeneous and isotropic. For such configurations, the following types of stress singu-
larity are identified: power singularities with both real and complex exponents, logarithmic
intensification of power singularities with real exponents, pure logarithmic singularities, and
log-squared singularities. These identifications are reviewed for the in-plane loading of angular
elastic plates comprised of a single material in Section 2, and for such plates comprised of
multiple materials in Section 3. In Section 4, singularity identifications are examined for the
out-of-plane shear of elastic wedges comprised of single and multiple materials, and for the
out-of-plane bending of elastic plates within the context of classical and higher-order theory. A
review of stress singularities identified for other geometries is given in Section 5, axisymmet-
ric and 3D configurations being considered. A limited examination of the stress singularities
identified for other field equations is given as well in Section 5. The paper closes with an
overview of the status of singularity identification within elasticity. This Part II of the review
has 227 references.@DOI: 10.1115/1.1767846#

1 INTRODUCTION

This article is a sequel to another one on stress singularities
in classical elastostatics which considers their removal, inter-
pretation, and analysis~Sinclair @1#—hereinafter referred to
simply as Part I!. Both papers share the recognition that it is
an exercise in futility to perform a stress analysis without
appreciating the presence of a singularity when one occurs.
In Part I, some methods for determining when a singularity is
present, and possibilities for dealing with it when it is, are
drawn from the literature and discussed. Here, in Part II, the
literature is reviewed for contributions that have actually ef-
fected determinations of when singularities may occur.

The means by which these determinations are made is
asymptotic identification. It is therefore necessary, if Part II
is to be fairly self-contained, that we recap key results at-
tending the asymptotic identification of stress singularities.
These are available in the literature and a description of their
development is given in Part I, Sections 4.1 and 4.2. The
particular approach considered in some detail there is via the
Airy stress function and separation of variables~after Will-
iams @2#!: There are other approaches which can lead to the
same results~complex potentials, Mellin transforms!.

To fix ideas, we consider an angular elastic plate in exten-

sion ~Fig. 1!. The basic separable fields used to analyze s
plates are given in Williams@2# and Part I, Section 4.1. In
terms of cylindrical polar coordinatesr and u, the stresses
s r , su , andt ru and displacementsur anduu in these fields
are

s r52lr l21@c1 cos~l11!u1c2 sin~l11!u

1~l23!~c3 cos~l21!u1c4 sin~l21!u!#

su5lr l21@c1 cos~l11!u1c2 sin~l11!u

1~l11!~c3 cos~l21!u1c4 sin~l21!u!#

t ru5lr l21@c1 sin~l11!u2c2 cos~l11!u

1~l21!~c3 sin~l21!u2c4 cos~l21!u!# (1.1)

ur5
2r l

2m
@c1 cos~l11!u1c2 sin~l11!u

1~l2k!~c3 cos~l21!u1c4 sin~l21!u!#

uu5
r l

2m
@c1 sin~l11!u2c2 cos~l11!u

1~l1k!~c3 sin~l21!u2c4 cos~l21!u!#
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Fig. 1 Geometry and coordinates for the angular elastic pla
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for n51,..,nA2r A and l51 with

ĉ1
21 ĉ2

21 ĉ2
2Þ0 in the stress field attending~1.2!

s5O~cos~h ln r !!1O~sin~h ln r !! when D50

for complex l511 i h

Herein, l has taken on the role of an eigenvalue of t
asymptotic problem,nA is the order of the matrixA, andr A

is its rank whenl is an eigenvalue. For a plate made of
single material,nA54 at most; for a bimaterial plate,nA

58, and so on. The last stress in~1.3! is not singular asr
→0, being bounded under this limit. However, it is und
fined asr→0. Hence, to a degree, it shares with singu
stresses some of the difficulties attending interpretation ar
→0.

The conditions in~1.3! apply to angular plates in exten
sion. Adaptation of~1.3! to states of antiplane shear follow
directly ~see Sections 4.1 and 4.2!. Adaptation of~1.3! to
bending is less direct but nonetheless fairly straightforw
~see Sections 4.3 and 4.4!. Adaptation of~1.3! to other con-
figurations is discussed in Section 5.

With inhomogeneous boundary conditions, further auxil-
iary fields can participate. These fields follow from a furth
differentiation with respect tol; stresses are given in Part
Section 4.2. By way of example, thesu stress component in
these fields is

su5r l21@~l ln2 r 12 ln r 2lu2!~ c̃1 cos~l11!u

1 c̃2 sin~l11!u!1~l11!~ c̃3 cos~l21!u

1 c̃4 sin~l21!u!1O~ ln r !1O~1!# (1.4)

asr→0. In ~1.4!, tildes atop constants distinguish them fro
those of~1.1! or ~1.2!. All three sorts of field in concert lead
to the following set of conditions for thesingular stresses
that are possible with uniform tractions/ linear displac
ments applied. For any stress components, asr→0:

s5ord~ ln2 r !1ord~ ln r ! when D50,
]nD

]ln 50

for n51,..,nA2r A with

c̃1
21 c̃2

21 c̃3
2Þ0 in the stresses attending~1.4!

s5ord~ ln r ! when D50,
]nD

]ln 50, for n51,.., nA2r A

(1.5)
with c̃15 c̃25 c̃350 in the stresses attending~1.4!

s5ord~ ln r ! when D50,
]nD

]ln Þ0, for n5nA2r A

with ĉ1
21 ĉ2

21 ĉ3
2Þ0 in the stresses attending~1.2!

provided throughout~1.5!, l51 andr AÞr A8 , wherer A8 is
the rank of the augmented matrix formed by combiningA
with the nontrivial forcing vector associated with the inh
mogeneous boundary conditions. Given such a nontri
vector, the singularities in~1.5! occur irrespective of far-field
boundary conditions. Hence the use of the ord notation

e

In ~1.1!, m is the shear modulus andk equals 324n for
plane strain and (32n)/(11n) for plane stress,n being
Poisson’s ratio. Further,ci ( i 51,...,4) are constants andl is
the separation-of-variables parameter. This parameter ma
complex. Then the real and imaginary parts of~1.1! each
constitute acceptable fields which may have distinct set
constants from one another. It is also possible to have au
iary fields participate in the asymptotic analysis. These fie
can be generated by differentiating with respect tol as in
Dempsey and Sinclair@3#, and are given in Part I, Sectio
4.2. By way of example, thesu stress component in thes
fields is

su5r l21@~11l ln r !~ ĉ1 cos~l11!u1 ĉ2 sin~l11!u!

1~2l111l~l11!ln r !~ ĉ3 cos~l21!u

1 ĉ4 sin~l21!u!2lu~ ĉ1 sin~l11!u2 ĉ2 cos~l11!u

1~l11!~ ĉ3 sin~l21!u2 ĉ4 cos~l21!u!!# (1.2)

In ~1.2!, the carets atop constants serve to distinguish th
from those of~1.1!

Introducing the fields in~1.1! into a set of fourhomoge-
neous boundary conditionsholding on the two edges of th
angular plate results in a homogeneous system of equa
in the four constantsci . Call the coefficient matrix of this
systemA and its determinantD. Then, also entertaining th
possibility of the participation of the fields attending~1.2!
leads to the following set of conditions for thesingular
stresses that are possible with homogeneous boundary
ditions. For any stress components, asr→0:

s5O~r j21 cos~h ln r !!1O~r j21 sin~h ln r !! when D50

for complex l5j1 ih~0,j,1!

s5O~r l21 ln r !1O~r l21! when D50,
]nD

]ln 50

for n51, .., nA2r A and real l~0,l,1!

s5O~r l21! when D50 for real l~0,l,1! (1.3)

s5O~ ln r ! when D50,
]nD

]ln 50
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~1.5! instead of the large orderO notation of ~1.3!.1 The
singularity conditions in~1.5! apply directly to angular plate
in extension: Adaptation to other configurations is discus
in Sections 4 and 5.

In what follows, we review asymptotic analyses that e
ploy ~1.3!, ~1.5!, or their equivalents to identify stress sing
larities. We begin in Section 2 with angular elastic pla
made of a single material under in-plane loading~ie, in ex-
tension!. In Section 3, we review the singularities identifie
when such plates are made of multiple materials. In Sec
4, we consider out-of-plane shear and bending. In Sectio
we consider a variety of other circumstances: axisymme
and 3D configurations within classical elasticity, and a li
ited review of the effects of other field equations. Finally,
Section 6, we close with some remarks on the general c
acter of results, and the overall state of investigations i
singularity identification.

2 STRESS SINGULARITIES FOR THE IN-PLANE
LOADING OF AN ELASTIC PLATE MADE OF A
SINGLE MATERIAL

2.1 Formulation and eigenvalue equations

Here we obtain the eigenvalue equations governing the
sible stress singularities that can occur at the vertex of
angular elastic plate subjected to different homogene
boundary conditions on its edges.

To formally state the class of problems under consid
ation, we continue to employ cylindrical polar coordinatesr
andu with origin O at the plate vertex~Fig. 1!. In terms of
these coordinates, the open angular region of interestR is
given by

R5$~r ,u!u0,r ,`, 0,u,f% (2.1)

where f is the angle subtended at the vertex of the pla
With these geometric preliminaries in place, we can form
late our class of problems as follows.

In general, we seek the planar stress componentss r , su ,
and t ru and their companion displacementsur and uu , as
functions of r and u throughoutR, satisfying: thestress
equations of equilibriumin the absence of body forces,

]s r

]r
1

1

r

]t ru

]u
1

s r2su

r
50

(2.2)
1

r

]su

]u
1

]t ru

]r
1

2t ru

r
50

on R; the stress-displacement relationsfor a linear elastic
plate which is both homogeneous and isotropic,

H s r

su
J 5mF 2Q

k21 H 1

2J S ]ur

]r
2

1

r

]uu

]u
2

ur

r D G
(2.3)

t ru5mF1

r

]ur

]u
1

]uu

]r
2

uu

r G

e

ed

-
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5,
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-
in
ar-
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u-

with

Q5
]ur

]r
1

1

r

]uu

]u
1

ur

r
(2.4)

on R, whereinQ is the dilatation whilem continues as the
shear modulus andk continues to equal 324n for plane
strain and (32n)/(11n) for plane stress,n being Poisson’s
ratio; any one of the admissible sets ofboundary conditions
listed in Table 1 on the plate edge atu50, together with
another such set on the edge atu5f or bisector atu5f/2 as
appropriate, for 0,r ,`; and theregularity requirementsat
the plate vertex,

ur5O~1!, uu5O~1!, as r→0 (2.5)

on R. In particular, we are interested in the local behavior
the fields complying with the foregoing in the vicinity of th
plate vertexO.

The boundary conditionsof Table 1 merit some discus
sion. Conditions I and II apply onu50 or f and are the
classical conditions for a stress-free surface and one clam
to a rigid attachment. The clamped conditions also admi
interpretation as the homogeneous complement to the co
tions attending indentation by a rigid punch with no s
permitted. Such indentation is also sometimes associ
with a ‘‘rough’’ or ‘‘adhesive’’ punch in the literature.

When the same conditions apply on both plate edgesu
50, f), it is useful to distinguish between symmetric an
antisymmetric response about the plate bisector. In the
instance, it is useful because the analysis can be easie
virtue of leading to a 232 determinant for the eigenvalu
equation instead of a 434. In the second instance, it is usef
because it can restrict the number of singular stress st
possible in a given global configuration before undertak
its global analysis. Conditions III and IV enable one to ma
this distinction. For the present plate configuration, they
ply on u5f/2 when used in this role.2

Conditions III can also be interpreted as the homogene
complement to indentation by a frictionless rigid punch.
this role, they apply onu50 or f and are usually adjoined
with the condition that the normal stress not be tensile in
contact region. That is,

su<0 (2.6)

Table 1. Homogeneous boundary conditions for in-plane loading

Identifying
Roman numeral

Boundary
conditions

Physical
description

I su50, t ru50 Stress free
II uu50, ur50 Clamped
III uu50, t ru50 Symmetry
IV ur50, su50 Antisymmetry
V uu50, t ru5 f su Contact with friction
VI su5kuu , t ru5k8ur Cohesive stress-separation law
1A definition of ord is given in Part I, Section 1.2. The essential difference between
andO is that, with the former, the coefficient of the related singularity cannot be z
whereas with the latter it can.
ord
ro,

2With symmetry,ur is an even function ofu aboutf/2, uu on odd: with antisymmetry,
vice versa. Hence, on drawing on~2.3!, ~2.4!, the boundary conditions given in III and
IV.
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on u50 or f, for 0,r ,`. The indentor shape can lead
further constraints outside the contact region to prevent
terpenetration.

Conditions IV can also be interpreted as those for a t
stiff reinforcement~Rao @4#!. The reinforcement is suffi-
ciently relatively stiff to prevent extension (ur50), but not
so stiff as to prevent bending because of its thinnessuu

Þ0).
Conditions V extend the contact conditions of III to pe

mit finite friction via Amonton’s law.3 Herein f has the mag-
nitude of the coefficient of friction. For these conditions,
addition to seeking to apply the contact constraint~2.6! and
any external displacement constraints, we must try to en
that the shear stress opposes any slipping. This may be
sible by selecting the sign off appropriately.

Conditions VI apply cohesive stress-separation laws. T
k and k8 are the stiffnesses associated with relative tra
verse and lateral displacements between material on the
sides of the ray on which the conditions are applied. Wh
applied onu50 in Fig. 1, bothk andk8 are positive: onu
5f, negative. In some instances it may be possible to
one or the other of these stiffnesses to zero. For examplek8
can be taken as zero when loading is symmetric. In contr
if k and k8 are let tend to infinity, Conditions II are recov
ered. In general,k and k8 are of constant magnitude in th
elastic regime and should both be consistent with the ela
moduli of the surrounding continuum.

Conditions VI can also be interpreted as those for a p
on an elastic foundation. Usually thenk8 is taken as zero
giving Winkler conditions~Winkler @6#; Oravas@7# has that
these conditions were given earlier in Euler@8#!.

In either role, Conditions VI differ from the others i
Table 1 in that a single boundary condition involves both
stress and a displacement. Such mixed boundary condit
would seem to be fairly rare in elasticity. One further i
stance occurs for the elastic angular plate reinforced b
beam column—see Nuller@9#.

All of the foregoing boundary conditions are applie
along radial rays emanating from the plate vertex. That is
straight boundaries. If instead they are applied on cur
boundaries that smoothly make tangents to the straight a
vertex, the same singular eigenvalues can be expected. C
panion eigenfunctions differ, however. See Ting@10#.

Some further comments on the preceding formulation
also appropriate. First, regarding the absencerequirements at
infinity on R. This renders fields complying with our formu
lation nonunique. Since the principal attribute of these fie
is the characterization of all possible responses at the p
vertex, including especially all possible stress singularit
there, such a lack of uniqueness is to be desired rather
regulated against. In any configuration offinite extent locally
containing one of the configurations admitted by our form
lation, conditions on the other boundaries in the finite geo
etry should make its solution unique.

Second, regardingdimensions. There is no length scale in
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the problems formulated. This is also something provided
associated finite problems. However, this does not mean
there need be concern as to the dimensional consistenc
the asymptotic analysis. To see this, observe that the fi
equations~2.2!, ~2.3!, and ~2.4! are equidimensional inr ,
and thatur anduu occur ‘‘divided’’ by r . Thusr , ur , anduu

can be replaced byr /L, ur /L, and uu /L, whereL is any
length scale, and leave the equations unchanged. Hence
asymptotic solutions obtained can be regarded as bein
terms ofr /L and thereby made dimensionally consistent.

Third, regarding material constants. These are con-
strained to the physically applicable ranges, 0,m,` and
0<n<1/2. However, for plane strain with an incompressib
material (n51/2), we have k51 and the stress
displacement relations of~2.3! and ~2.4! are no longer di-
rectly applicable. Under these circumstances we requireQ
50 in ~2.4! and modify~2.3! by removing theQ terms.

Fourth, regarding theregularity requirements, ~2.5!.
These ensure bounded displacements at the plate vertex
bounded forces on rays radiating from the vertex. Such fie
definitely appeal as being more physical than those with
bounded displacements or forces. This, though, is not
reason for~2.5!. If physical appropriateness in itself were
serve as sufficient justification, then we would want to p
hibit unbounded stresses as well. We cannot do this. Th
because then the formulation does not admit a sufficie
broad class of fields to enable its solution in general: Tha
the fields so admitted are incomplete. In contrast, we
prohibit unbounded displacements because the fields so
mitted are complete. This is explicitly shown for Condition
I, and indicated for the remaining conditions in Table 1,
Gregory@11#.4

For problems wherein the completeness of elastic fie
with bounded displacements holds true, the regularity
quirements of~2.5! are not just a nice option. Rather, the
are essential if any companion finite problems are to h
unique solutions. To explain further, consider the element
problem of a circular elastic plate of unit radius under a
around uniform pressurep. Absent regularity requirement
as r→0, two solutions are possible:

s r5su52p, ur52
pr

4m
~k21! (2.7)

or

s r52su52
p

r 2 , ur5
p

2mr
(2.8)

Requiring bounded displacements eliminates~2.8! and ren-
ders the problem well posed by making it have a uniq
solution. Analogously, uniqueness for singular stress fie
with bounded displacements in completely formulated pr
lems for finite regions occurs: The proof of this follows fro

4From the abstract and introduction in Gregory@11#, one might think that the original
Williams’ eigenfunctions are complete for the boundary conditions in Williams@2#. As
is demonstrated in Section 2.3, this is not so. Further reading of@11#, though, reveals
that it recognizes the need to supplement the fields of~1.1! with those attending~1.2!
for completeness.
3Also termed Coulomb’s law in the literature. See Ch 13, Johnson@5# for conditions
under which there is some physical support for the use of this law.
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Table 2. Eigenvalue equations for symmetric response aboutuÄfÕ2

Boundary conditions
on uÄ0,f

Eigenvalue
equation

Equation
number

I or VI-I or VI l sinf52sinlf ~2.9!
II-II l sinf5k sinlf ~2.10!
III-III cos f5coslf ~2.11!
V-V f @(12k)sinlf1(11k12l)sinf#

5(11k)(coslf2cosf)
~2.12!
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contact,~2.11! and ~2.15! in Tables 2 and 3, are given in
Kalandiia@19#. Equations for these conditions which are e
actly the same as~2.11! and~2.15! are provided in Seweryn
and Molski @20#. Two further frictionless contact equation
for such conditions in combination with free and wi
clamped conditions can be obtained by settingf 50 in ~2.18!
and ~2.19! of Table 4, respectively: These two are given
Kalandiia@19#. The equation for contact with friction actin
with itself symmetrically,~2.12!, would not appear to be
readily available in the literature; the equation when this
tion is antisymmetric,~2.16!, is essentially the same as th
corresponding equation in Dempsey@21#. The contact with
friction-free equation of~2.18! in Table 4 can be obtained
from Gdoutos and Theocaris@22#. It follows on setting ‘‘G2’’
in @22# to infinity to reflect a rigid punch, and ‘‘q’ ’ 52 f
because the friction conditions therein hold on a nega
u-edge. The contact with friction-clamped equation of~2.19!
in Table 4 is essentially given in Dempsey@21#. The equiva-
lence of stress-free conditions with those for cohesive str
separation laws as far as the foregoing eigenvalue equa
are concerned is basically argued in Sinclair@23#.

When Conditions IV are interpreted as being for a th
stiff reinforcement, eigenvalue equations for these conditi
with others and a plate of vertex anglef/2 are given in Table
4. When Conditions IV act in this role on both edges of
plate of vertex anglef, the eigenvalue equation can b
formed as a product of~2.11! and ~2.15!.6

2.2 Power singularities with homogeneous boundary
conditions

For the homogeneous boundary conditions of Table 1,
associated eigenvalue equations of Tables 2–4 can give
to stresses with power singularities when their eigenval
are less than one—see~1.1!. To be in accordance with the
regularity requirements~2.5!, these eigenvalues must not b
less than zero. An eigenvalue equal to zero corresponds
rigid body displacement in~1.1! and therefore is not of in-
terest because associated stresses are not singular: The
value leads to unbounded displacements for the fields a
ciated with ~1.2! and therefore is not admissible. Thus th
eigenvalue range forpower singularitiesis

0,l,1 (2.20)

We review eigenvalues within this range for a variety
configurations in this section.

The solution of the eigenvalue equations within the s
gular range typically cannot be done completely analytica
Accordingly it usually proceeds numerically except for a fe
select instances. The results so found are compared
those in the literature. For all sources given in what follow
they are consistent. Thus their calculation here may
viewed as independently confirming values already de
mined in the cited sources.

In presenting results we introduce thesingularity expo-
nentg defined by
of
the boundedness of attendant strain energies and the
Kirchhoff argument~see Knowles and Pucik@12#!.

On occasion, further support for the bounded displa
ment conditions derives from solving a singular problem
the limit of a sequence of nonsingular problems, the a
logue of the approach adopted in concentrated load probl
and for generalized functions in general in Lighthill@13#. An
example is the plate under uniform remote tension with
elliptical hole. As the height of the hole parallel to the te
sion goes to zero, the nonsingular stress fields can be sh
to recover the inverse-square-root stress singularity o
stress-free mathematically-sharp crack~Kolossoff @14,15#
and Inglis@16#!. This singularity has bounded displacemen
The same is true of other singular configurations realized
this way: see, for example, Neuber@17#.

The analysis of the class of asymptotic problems form
lated proceeds routinely on using the approach outlined
the Introduction here, and described in some detail in Pa
Section 4.1. This yields the eigenvalue equations set ou
Tables 2, 3, and 4 for symmetric, antisymmetric, and mix
configurations, respectively. These eigenvalue equations
typically available in the literature as described next: He
they are independently derived largely as a check.

The free-free equations~2.9! and~2.13! in Tables 2 and 3,
the clamped-clamped equations~2.10! and~2.14! in Tables 2
and 3, and the clamped-free equation~2.17! in Table 4 all
effectively appear in Williams@2# and Kitover@18#.5 Equiva-
lent equations to those for frictionless contact-frictionle

Table 3. Eigenvalue equations for antisymmetric response aboutu
ÄfÕ2

Boundary conditions
on uÄ0,f

Eigenvalue
equation

Equation
number

I or VI-I or VI l sinf5sinlf ~2.13!
II-II l sinf52k sinlf ~2.14!
III-III cos f52coslf ~2.15!
V-V f @(12k)sinlf2(11k12l)sinf#

5(11k)(coslf1cosf)
~2.16!

Table 4. Eigenvalue equations for mixed problems

Boundary
conditions
on uÄ0,f

Eigenvalue
equation

Equation
number

I or VI-II 4@k sin2 lf1l2 sin2 f#5(11k)2 ~2.17!
I or VI-V 2 f @(12k)sin2 lf2l(11k12l)sin2 f#

5(11k)(sin 2lf1l sin 2f)
~2.18!

II-V 2 f @k(12k)sin2 lf1l(11k12l)sin2 f#
5(11k)(k sin 2lf2l sin 2f)

~2.19!
n-
ose in
ss

o

6That is, by rearranging~2.11!, ~2.15! so that they have expressions on one side
the5, zero on the other, then setting the product of these expressions50. The so-
obtained equation is given in Ro¨ssle@24#. This reference also gives nine further eige
value equations. These equations are contained in, and are consistent with, th
Tables 2–4.
5The eigenvalue equations in Kitover@18# are correct for plane strain, but appear
have typographical errors for plane stress.
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g512l (2.21)

Then ~1.1! has stresses which behave in accordance with

s5O~r 2g! as r→0 (2.22)

wheres is any stress component. That is, stresses are singu-

lar for g positive, and the largerg the more singular. The
limits on the nature of this power singularity are, from~2.20!
and ~2.21!,

0,g,1 (2.23)

In the event thatl is complex, we have stress singularities

Fig. 2 Singularity exponents for varying vertex angles:a! free-free and clamped-clamped~from ~2.9!, ~2.13! and ~2.10!, ~2.14!, respec-
tively!, b! frictionless contact-frictionless contact~from ~2.11!, ~2.15!!, c! contact with friction-contact with friction~from ~2.12!, ~2.16!!,
d! clamped-free~from ~2.17!!, e! contact-free~from ~2.18!!, f! contact-clamped~from ~2.19!!
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in the first of ~1.3! with Re (12l)512j5g, Im l5h, and
~2.23! still applying tog. Results forg satisfying~2.23! are
presented in Fig. 2a–f for varying vertex angles.

Included in Fig. 2a are the singularity exponents for the
free–free plate, for both symmetric loading from~2.9!, and
antisymmetric from~2.13!. The symmetric curve is given in
Fig. 1, Williams @2#. It dominates singular character if load-
ing is symmetric or mixed because the antisymmetric curve
realizes weaker singularities with stress-free boundary con-
ditions: Of course, it cannot dominate if loading is purely
antisymmetric. The antisymmetric curve may be found in
Fig. 9, Rösel @25# or Fig. 3a, Seweryn and Molski@20#.

For f5360° with free-free conditions, we have the tradi-
tional, mathematically-sharp, stress-free crack with its
inverse-square-root singularity for both symmetric and anti-
symmetric loading (P1 , Fig. 2a!. For f5270°, we have a
stress-free 90° reentrant corner with two possible singulari-
ties, the stronger being for symmetric loading (P2 and P3 ,
Fig. 2a!. For f,257.5°, no further singularities are found
for antisymmetric loading. Forf5180°, we have no singu-
larity for symmetric loading. This is because, for this stress-
free half-plane geometry, there is no discontinuity in bound-
ary directions or conditions. Forf<180°, no further
singularities are found for symmetric loading. Further, there
are no complex eigenvalues with real parts in the singularity
range for the free-free plate; this is shown in Karp and Karal
@26#.

Given the equivalence ofcohesive stress-separation laws
with stress-free conditions, the free-free curves of Fig. 2a
also apply for these laws. Hence, the removal of some sin-
gularities~noted in Part I, Section 2.3! can be confirmed. For
a cracked configuration, putting cohesive laws ahead of a
sharp crack as well as in back of it effectively gives a free-

free plate of vertex anglef5180°. Thus no singularities
For a 90° reentrant corner under symmetric loading, co
sive laws should be inserted ahead of the corner on the
bisecting the plate to achieve bounded stiffnesses. This e
tively gives a free-free plate withf5135°. Thus no singu-
larities. The same sort of argument applies for antisymme
loading ~see Sinclair, Khatod, and Rummel@27# for further
explanation!.

Also in Fig. 2a are the singularity exponents for th
clamped-clampedplate, for both symmetric loading from
~2.10!, and antisymmetric from~2.14!. These are for a rep
resentative value ofk52, corresponding to Poisson’s rati
n51/4 for plane strain, orn51/3 for plane stress. A very
similar symmetric curve is given in Fig. 1, Williams@2#, for

k52 1
13: Some eigenvalues for antisymmetric response

the samek are given in Williams@28# from Ricci @29#. The
actual symmetric curve fork52 may be found in Fig. 5a,
Seweryn and Molski@20#, while the companion antisymmet
ric curve is given in Fig. 8a, ibid. In Williams @2#, the sin-
gularity associated with symmetric loading under clamp
clamped conditions is claimed to be dominant. This is so
loading is purely symmetric: Otherwise, for these bound
conditions, the singularity associated with antisymmet
loading is dominant.

For clamped-clamped conditions, both symmetric and
tisymmetric curves atf5360° have an inverse-square-ro
singularity. Forf5180°, both do not have a singularity fo
similar reasons for this being so for free-free symmetric
sponse. Forf,180°, no singularities are found for eithe
No singularities associated with complex eigenvalues
found for either.

Some indication of the influence of Poisson’s ratio

Fig. 2 Continued
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singularities with clamped-clamped conditions is contain
in Fig. 2a. This is because free-free with symmetry has
same eigenvalue equation as clamped-clamped with antis
metry andk51—see~2.9! and ~2.14!. Similarly free-free
with antisymmetry is the same as clamped-clamped w
symmetry andk51—see~2.13! and ~2.10!. Thus, ask de-
creases corresponding to Poisson’s ratio increasing, the
gularity for antisymmetric clamped-clamped conditions g
stronger, while that for symmetric clamped-clamped g
weaker. The trends thus evident in Fig. 2a are confirmed by
singularity exponents for clamped-clamped conditions fok

51 2
3 and 3 in Seweryn and Molski@20#.

In Fig. 2b, singularity exponents are plotted for thefric-
tionless contact-frictionless contactplate, for both symmetric
loading from ~2.11!, and antisymmetric from~2.15!. These
two eigenvalue equations are the simplest of all and adm
analytical solution. Thus for symmetric configurations,

g522
2p

f
~p,f,2p! (2.24)

while for antisymmetric,

g5
p

f
, 22

3p

f S 3p

2
,f<2p D (2.25)

Expressions yielding these values ofg are given in equations
~36! and~41!, Seweryn and Molski@20#. These are the value
plotted in Fig. 2b.

The ranges off in ~2.24! and ~2.25! bear comment. For
symmetric loading, the absence of singular stresses whef
5180° is to be expected for the reasons put forward ear
Given no singularities are found forf,180°, the range in-
cludes all singularities for this loading. For antisymmet
loading,f5270° terminates singular response on the low
branch in a similar manner to the free-free antisymme
case of Fig. 2a. For the upper branch, the same limit onf
holds if antisymmetric singularities are not to be strong
than those associated with symmetric loading. The reas
for limiting singularity exponents in this way are as follow
For contact on both plate edges and fields that are pu
antisymmetric,su must be positive on one edge, negative
the other. Where it is positive would be in violation of o
contact stress constraint~2.6!. This means that antisymmetri
loading needs to act in conjunction with sufficient symmet
loading if compliance with~2.6! is to be achieved. Antisym
metric singularity exponents cannot exceed symmetric if
is to happen. Hence the limit in~2.25!. Observe, though, tha
in the analysis of a given global problem, such complian
with ~2.6! whence~2.25! does not have to be the case:
needs to be checked for, and means sought to remedy
situation if it does not occur.7

In Fig. 2c, singularity exponents for thecontact with
friction-contact with friction plate are plotted. These ar
from ~2.12! for symmetric configurations,~2.16! for antisym-
metric. Values of friction coefficientf 51/2 and ofk52 are
taken as representative. The general character of the e
n
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nents is similar to that of Fig. 2b for f 50, including the
bounding of singularities for antisymmetric loading by tho
for symmetric for the same reasons. That is, here too
antisymmetric response must occur in concert with suffici
symmetric participation if compliance with~2.6! is to be
achieved.

There are some differences, however. For symmetric c
figurations andf 51/2, there are two real branches whic
merge together atf5252.5° into complex roots with a com
mon real part~shown in Fig. 2c! and equal imaginary part
of opposite sign~not shown!. Checking the companion
eigenfunction for these real eigenvalues reveals that the
per branch~shown! does have the contact shear oppos
motion; the lower branch does not~hence not shown!. As
previously, though, this removal here does not necessa
mean that fields associated with the lower branch could
be present in a problem. Again, singular stresses cease
possible for symmetric configurations whenf5180°.

For symmetric loading, increasing the coefficient of fri
tion f tends to reduce singularity exponents, as can be s
by comparing Fig. 2c with Fig. 2b. For antisymmetric load-
ing, results are mixed in this regard. For both types of lo
ing, increasing Poisson’s ratio typically increases singula
exponents.

In Fig. 2d, singularity exponents for theclamped-free
plate are plotted. These exponents are from~2.17!. The real
parts of all singular branches are shown for the represe
tive valuek52; just the dominant singularity fork51. A
similar curve to the upper branch fork52 is given in Fig. 1,

Williams @2#, for k52 1
13. The real parts of all branches fo

k52, as well as the most singular branch fork51, are given
in Figs. 12a and 14a, Seweryn and Molski @20#,
respectively.8

For f5360° and clamped-free conditions, there are fo
possible singularities fork52: two for each complex roo
indicated in Fig. 2d. For f5180° andk52, we have an
oscillatory singularity as for an adhering, rigid, flat pun
(P4 , Fig. 2d!. It is the presence of thesetwo roots as com-
plex conjugates that precludes the removal of singu
stresses in conforming contact problems when stick-free c
ditions are assumed. Forf590° we have the singularities o
P5 (n51/2, k51) andP6 (n53/8, k53/2) which, for ex-
ample, apply to the edge of an adhering rubber tire and at
outer surface of an epoxy-steel joint. No singularities a
found for f,60° when k52, f,45° when k51. This
trend of a larger range of vertex angles with stress singul
ties with larger values of Poisson’s ratio~smallerk! is con-
firmed by results for othern in Seweryn and Molski@20#.

In Fig. 2e, singularity exponents for thecontact-freeplate
are plotted. These exponents are from~2.18!. The real parts
of all singular branches are shown for the chosen repre
tative case of contact with friction (f 51/2 andk52); just
the dominant singularity is shown for the frictionless ca
The exponents for contact with friction would not appear
be available in the open literature: The values shown in F
s
7This is also the reason for excluding the further antisymmetric singularity expo
g522p/f(p/2,f,p).
ent8The imaginary parts of singular eigenvalues fork52 and the other singular branche
for k51 are also provided in Seweryn and Molski@20#.
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2e are confirmed in Klingbeil@30#. The exponents for fric-
tionless contact are given in Fig. 2a, Seweryn and Molski
@20#.9

There need be no restrictions on the branches include
Fig. 2e as a result of contact constraints. This is because
sign of the participation coefficient can always be such t
the contact stress condition~2.6! is met, and a rigid body
displacement can always be added so as to ensure the
tional shear opposes slip. That is, the local fields associ
with the singularity exponents of Fig. 2e can potentially par-
ticipate in a global problem and all auxiliary contact con
tions be met. Whether this actually happens for the partic
global configuration of interest needs to be checked.

For f5360° and contact with friction-free conditions
there are three singular stress fields possible. This is also
case for frictionless contact, although this is not apparen
Fig. 2e because only the most singular branch is includ
For f5180°, the frictionless contact case gives the sin
larity as for a tire at the edge of a pothole on an icy pavem
(P7 , Fig. 2e!. For contact with friction andf5180°, the
singularity that results is as for an adhering tire but w
some slip permitted. Under these conditions there isonereal
singularity ~at P78 , Fig. 2e! compared to the two for an ad
hering tire with no slip. This enables the stress singularity
be removed for conforming contact when there is cont
with friction-free conditions. No singularities are found fo
f,90° when f 50, f,116.6° when f 51/2. This is the
trend in general, namely, asf becomes more positive, th
range of vertex angles with stress singularities decreases
the other hand, varying Poisson’s ratio while holdingf con-
stant leaves the range of singular vertex angles unchang

In Fig. 2f, singularity exponents for thecontact-clamped
plate are plotted. These exponents are from~2.19!. All sin-
gular branches are shown for the representative case of
tact with friction (f 51/2 andk52); just the dominant sin-
gularity is shown for the representative frictionless casek
52). The exponents for contact with friction would not a
pear to be available in the open literature: The values sh
in Fig. 2f are confirmed in Smallwood@32#. The exponents
for frictionless contact are given in Fig. 5a, Seweryn and
Molski @20#. For the same reasons as for Fig. 2e, there need
be no restrictions on the branches included in Fig. 2f as a
result of contact constraints.

For f5360° and contact with friction-clamped cond
tions, there are three singular stress fields possible. The s
is true for frictionless contact-clamped conditions, thou
this is not shown in Fig. 2f. For f5180° there is but one
singularity for a given coefficient of friction. This enable
singularities to be removed when transitioning from stick
slip in contact problems. No singularities are found forf
,90° whenf 50, f,63.4° whenf 51/2. This is the trend
in general here, namely, asf becomes more positive, th
range of singular vertex angles increases. Conversely,
constantf , increasing Poisson’s ratio reduces the range
singular vertex angles.
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While not strictly a power singularity, we close this se
tion by noting instances of undefined oscillatory stresses
in the last of~1.3!. These occur for mixed problems. For th
clamped-free plate, their presence is indicated in Fig. 1a,
Seweryn and Molski@20#, for k53. Solving ~2.17! for l
511 ih and k53 then gives oscillatory stresses whenf
5100.4°, 274.0° withh50.13, 0.02, respectively. Similarly
for the other mixed problems—contact-free and conta
clamped—solving~2.18! and ~2.19! for l511 ih leads to
oscillatory stresses.

2.3 Log singularities with homogeneous boundary con-
ditions

In addition to the singularities revealed for the real and co
plex g of Fig. 2, there is the possibility of logarithmic con
tributions to stress singularities. These may be produced
der the homogeneous boundary conditions of Table 1. T
they can take the form oflogarithmic intensificationof stress
singularities. That is, stresses which behave as

s5O~r 2g ln r !1O~r 2g! as r→0 (2.26)

for g.0. For homogeneous boundary conditions and stres
of the form of ~2.26!, at the outset these stem from re
eigenvalues which are repeated roots of the eigenvalue e
tion. This is a necessary but not sufficient condition for the
stresses~see~1.3!!.

Repeated roots can be expected to occur where there
transition from two real roots to roots which are compl
conjugates. To see this, supposel is an eigenvalue ofD
50 for vertex anglef. Now perturbf by df while continu-
ing to insistD50, and letdl denote the accompanying pe
turbation inl. From Taylor’s theorem in two variables, w
have

05
]D

]l
dl1

]D

]f
df1

]2D

]l2

dl2

2
1

]2D

]l]f
dldf

1
]2D

]f2

df2

2
1...as df→0 (2.27)

wherein it is understood that all derivatives are evaluated
l and f. If l is a repeated root, then]D/]l50 for l, f.
Thus, provided]D/]fÞ0, ]2D/]l2Þ0 at l andf,

dl56A22df
]D

]fY ]2D

]l21O~df! as df→0

(2.28)

As df changes sign in~2.28!, we have the anticipated tran
sition from two real roots to roots that are complex con
gates.

This is what occurs atR1 in Fig. 2d. Further checking of
the rank conditions in the second of~1.3! shows that they are
satisfied for this repeated root. Forg.0, these rank condi-
tions are necessary for the possibility of logarithmic inten
fication of power singularities. In Dempsey@33#, such checks
are carried out for the dominant singularity in the clampe
free plate and consistently show the possibility of logari
mic intensification of singularities wherever there is a tra
9England@31#, Fig. 5, gives values consistent with the exponents given here forf 50
and 0<f<180°, 270°<f<360°; the values ibid for 180°,f,270° do not apply to
the frictionless contact-free plate.
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Table 5. Configurations with logarithmic singularities under homogeneous boundary conditions

Boundary conditions
on uÄ0,f Configuration specifications

II-II f5f* , k51
V-V f5p, 2p, k51, f Þ0

k5cos 2f2f21 sin 2f, f 52cotf, fÞp, 2p
I or VI-II f5p2fk , 2p2fk , k52f21 tanf
I or VI-V k5112 cos 2f22f21 sin 2f, f 52cotf, fÞp, 2p
II-V f5p/2, 3p/2, k53, f 523f/2

f5f̂k , f 5(k21)(32k)21cotf, fÞp, 2p, kÞ3
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sition from complex to real roots. These transitions occur
any f.101.4° exceptf5180° and 360°, and have 0,g
,0.75.

It can be expected that logarithmic intensification also
curs for the less singular branch ofg under clamped-free
conditions wherever there is a transition from complex
real roots. Fork52, R2 in Fig. 2d is an example. For loga
rithmic intensification being possible though, the rank con
tions in the second of~1.3! need to be checked for thes
configurations as well.

On occasion, repeated roots occur without a transit
from complex to real values. This can be so if]D/]f50 for
l andf in ~2.27!. Actual examples areR3 andP4 , both for
k51, in Fig. 2d. This is not obvious from the figure becau
the less-singular intersecting branch is not shown~see,
though, Fig. 14a, Seweryn and Molski@20#!. For these
points, however, Dempsey@33# has that the rank condition
of ~1.3! are not satisfied and, consequently, logarithmic
tensification is not possible.

Further configurations wherein logarithmic intensificati
can be expected are where there are transitions from com
to real eigenvalues for plates in contact with friction. The
includeR4 of Fig. 2c, andR5 andR6 of Fig. 2e. Again, the
rank conditions need to be checked to see if this is real
possibility.

Typically logarithmic intensification of stress singularitie
can be expected as stress singularities pass from being
power singularities to oscillatory power singularities.
some sense, the logarithmic intensification can be viewe
a transition statebetween the two, resulting in stresses th
are more singular than those with just power singulariti
yet arguably less pathological than oscillatory singulariti
We consider logarithmic singularities further in this sort
role next when we review their occurrence without pow
terms.

Pure logarithmic singularitieshave stresses which behav
as

s5O~ ln r ! as r→0 (2.29)

For the pure logarithmic singularities of~2.29! under the
homogeneous boundary conditions of Table 1, we need
isfaction of the penultimate conditions in~1.3!. Only then
can a log singularity occur. These are the weakest stress
gularities possible in elasticity, and consequently the hard
to detect absent an a priori appreciation of their poss
participation. Accordingly, their asymptotic identification ca
be of significant value.
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Details of the application of the identification process
tending the last of~1.3!, for the boundary conditions of Tabl
1, may be obtained from Sinclair@34#: Results are summa
rized ibid. Every logarithmically singular configuration s
identified complied with all of the conditions in the last o
~1.3!. Moreover, when situations arose during analysis
which some of these requirements were complied with
others not, no logarithmic singularities were found.

Given the importance of being aware of the participati
of logarithmic stress singularities, we reiterate the configu
tions so found here in Table 5. This table gives seven dif
ent sets of specifications for configurations with log sing
larities.

In Table 5,k is additionally constrained to the range fo
physically applicable Poisson’s ratios. This is broadest
plane strain. Hence

1<k<3 (2.30)

Further in Table 5, the vertex anglesf* , fk , and f̂k are
such that

f* 5tanf* , fk5sin21
Ak11

2

kf̂k~~k21!214 cos 2f̂k!5~3k21!sin 2f̂k (2.31)

wherein the principal value of the arc sine is taken (0<fk

<p/2). The first of~2.31! realizesf* 5257.5°, a value pre-
viously noted as that for the termination of power singula
ties with free-free conditions and antisymmetry~Fig. 2a!.
For k51, free-free eigenvalues coincide with those f
clamped-clamped. Consequently this value for an inco
pressible solid under clamped-clamped conditions repres
a transition from stresses which are singular in themselve
those which are bounded but have unbounded derivati
We therefore distinguish it as the pointT1 in Fig. 2a. The
same is true for all the other logarithmic configurations list
in Table 5: They all represent transitions from power str
singularities to no stress singularities. Further, they typica
also represent transitions from real eigenvalues to comp

Local fields containing logarithmic stress singularities f
all the configurations listed in Table 5 can be obtained fr
Sinclair @34#. For the contact-clamped plate whenk51, f
50, andf̂k5f* /2, fields are also available from Dempse
@21#. All of these fields demonstrate that the fields of~1.1!
alone are, in general, incomplete for the plate with homo
neous boundary conditions as in Table 1. In particular, th
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Table 6. Inhomogeneous boundary conditions for in-plane loading

Identifying
Roman numeral

Boundary
conditions

Physical
description

I8 su52p, t ru5q Uniform tractions
II 8 uu5rDf, ur5rDf8 Pinching with lateral constraint
V8 uu5rDf, t ru5 f su Pinching with friction
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@35#!. Again, they can be logarithmically intensified if th
singularity coincides with that for homogeneous bound
conditions. If, on the other hand, prescribed displaceme
are continuously differentiable, generally no stress singul
ties are produced. An apparent exception occurs when
displacements are linear inr , the integral of uniform traction
conditions in effect.10 For these conditions, we can similarl
expect pure logarithmic singularities.

Given the importance of identifying logarithmically sin
gular configurations, henceforth in this section we consi
inhomogeneous boundary conditions as in Table 6. These
the counterparts of those in Table 1 which include unifo
tractions or linear displacements.

The boundary conditions of Table 6 merit some expla
tion. In Conditions I8, p is an applied pressure whileq is as
a constant shear. In Conditions II8, Df can be interpreted a
the amount by which the vertex angle of an angular plate
reduced by as a result of pinching contact with a rigid inde
tor. With this interpretation,Df is positive on a negative
u-edge, and vice versa. If such contact occurs with no s
Df850: If it occurs with slip, we have Conditions V8. The
inclusion of the possibility ofDf8Þ0 is so as to replicate
displacement discontinuities which can occur in bound
conditions in finite element analysis~FEA!. Such disconti-
nuities occur in displacement derivatives at nodes when
placement shape functions are used as boundary condi
in submodeling with FEA, a practice implemented in som
standard codes~eg, Chapter 14, ANSYS@36# and Section
7.3, ABAQUS @37#; see Sinclair and Epps@38# for further
explanation!.

Using the conditions in~1.5!, instances of logarithmic
stress singularities with the inhomogeneous boundary co
tions of Table 6 can be identified. Typically by this mean
logarithmic singularities in problems have been identified
the literature as follows: Conditions I8– I in Kolossoff @15#
and Dempsey@39#; Conditions I8– II in Sinclair @40#; all
combinations of other conditions in Sinclair@34# and Sinclair
and Epps@38#.

The configurations so found are given in Table 7: Ther
there are twelve different sets of specifications for config
rations with log singularities. In this table,k continues to be
demonstrate that the original Williams’ eigenfunctions a
incomplete for the problems considered in Williams@2#.

2.4 Singularities with inhomogeneous boundary condi-
tions

All of the preceding singularities for the in-plane loading
an elastic plate occur with homogeneous boundary co
tions on its radial edges. Here we consider what additio
singular stress fields can be induced by inhomogene
boundary conditions.

For applied tractionswhich are themselves singular, inte
rior stresses are at least likewise singular. There is also
potential of logarithmic intensification as in~2.26!. This can
occur if the configuration of interest shares the same sin
larity as in the applied tractions when under correspond
homogeneous boundary conditions. This would mean l
squared singularities in the event that the applied tracti
were logarithmically singular. However, it would not see
that either power or log singularities in applied tractions
likely to be needed in practice.

What is more likely are nonsingular applied tractions.
they are ord(r g) asr→0 andg.0, then the interior stresse
are also nonsingular. This is so even if they get multiplied
ln r becauser g ln r50 at r 50 wheng.0. Alternatively, if
the applied tractions are ord(r 0) asr→0, we may see a tran
sition between stresses which are nonsingular for tract
that are ord(r g), to stresses which are singular for tractio
that are ord(r 2g). Pure logarithmic singularities are natur
candidates for such a transition: We look for further instan
of their being induced by uniform tractions in what follow

For applied displacements, stress singularities can also b
produced. In the first instance, these stem from prescr
displacements which are not continuously differentiable~as
in uu}Ar ). Then, singular stresses simply match the sin
larity in displacement derivatives~see, eg, Browning and J
u-10‘‘Apparent’’ because displacements which are linear inr can have discontinuities in
their derivatives whenr→0 on differentu.
Table 7. Configurations with logarithmic singularities under inhomogeneous boundary conditions

Boundary conditions
on uÄ0,f Configuration specifications

I8 or VI-I f5p, 2p, qÞ0
f5f* , pÞ0 or qÞ0

II 8– II f5p, 2p, DfÞ0 or Df8Þ0
k51, DfÞ0 or Df8Þ0, fÞf*V8– V f5p, 2p, DfÞ0, kÞ1, f Þ0
f 50, DfÞ0

VI-VI f5f* , 2p
I8 or VI– II 8 f5fk , p6fk , 2p2fk , pÞ0 or qÞ0 or Df8Þ0, kÞ2f21 tanf
I8 or VI-V f5p, 2p, f pÞ0 or qÞ0

f 52cotf, fÞp, 2p, f pÞ0 or qÞ0, kÞ112 cos 2f22f21 sin 2f
II 8– V f5p, 2p, DfÞ0

f5p/2, 3p/2, k53, DfÞ0 or f Df8Þ0, f Þ23f/2
f 5(k21)(32k)21 cotf, fÞp, 2p, f̂k , DfÞ0 or Df8Þ0, kÞ3



he
e-

or
-
on
of

e

ry

396 Sinclair: Stress singularities in classical elasticity–II Appl Mech Rev vol 57, no 5, September 2004
constrained as in~2.30! while f* , fk , andf̂k continue to
be as in~2.31!. By suitably adjoining rigid body rotations,
any combination of boundary conditions drawn from Tables
1 and 6 can be realized by the combinations given
in Table 7.

A first instance of a logarithmic stress singularity in Table
7 occurs for a step shear on a half-plane (f5p andqÞ0).
The full stress field is given in Kolossoff@15#. A related
instance occurs for a constant shear on one side of a crack
(f52p). Complete fields are given in Dempsey@39#. In
both of these cases, the log singularity must participate ifq

Þ0 in the local boundary conditions. This is in contrast to t
log singularities of Table 5 whose actual participation d
pends on far-field conditions.

A further instance of a logarithmic stress singularity f
Conditions I8– I in Table 7 occurs in Levy’s problem, al
though such a log field is not included in the original soluti
in Levy @41#. This problem entails an angular elastic plate
vertex anglef subjected to a uniform pressurep on one edge
while being free of stress on the other~Fig. 3a whereinf
5f* ). Levy’s traditional solution to the problem may b
found in Article 45, Timoshenko and Goodier@42#. By way

Fig. 3 Examples of configurations with logarithmic stress singularities:a! Levy’s problem for a reentrant corner (f5f* ), b! pressure on
a clamped acute corner (k52), c! symmetric indentation by a frictionless rigid sharp plate,d! displacement shape functions as bounda
conditions for a submodel in FEA
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of example, the normal stresssu in Levy’s solution, in terms
of the polar coordinatesr andu of Fig. 3a, may be expressed
by

su52pF12
sinu cos~f2u!2u cosf

sinf2f cosf G (2.32)

In ~2.32!, it can be seen thatsu takes on the values of2p,0
at u50,f, respectively, and that there is no logarithmic s
gularity in su . However, also clear in~2.32! is that the so-
lution breaks down forf5f* of ~2.31!. This breakdown for
the critical vertex angle off* is passed by without commen
in Levy @41#. It is noted in Fillunger@43#, but perhaps is no
as widely recognized today as it could be~eg, no mention of
its existence is made in Timoshenko and Goodier@42#!.
Nonetheless, it is serious and must be remedied if any ph
cal sense whatsoever is to be made of elasticity treatmen
a loaded plate which is as in Fig. 3a.

Supplementing the fields used to generate~2.32! by those
attending~1.2! rectifies the situation. This is done in Dem
sey @39#. The resultingsu , for example, may be expresse
by

su52pF12
u

f*
2

cscf*
2f

*
2 ~2~sin~2u2f* !

2~2u2f* !cosf* !ln r 1~2u2f* !~cos~2u2f* !

2cosf* !!G (2.33)

for f5f* . Now there is a log singularity for this verte
angle. Complete fields are given in Dempsey@39#. A reason-
able transition between~2.32! and~2.33! is achieved in Ting
@44#.

While it was once understandable to regard the bre
down in the traditional solution to Levy’s problem as par
doxical ~as in Sternberg and Koiter@45#!, armed with the
analytical developments of Dempsey@39# and Ting @44#, it
now would seem to be far less so. Thus here rather than
f* in Levy’s problem a critical angle, we view it as atran-
sition angleassociated with a logarithmic stress state wh
is transitional much as in Section 2.3.

All of the foregoing examples occur for vertex angl
where l51 is an eigenvalue. That is, for angles whereg
50 in Fig. 2. Suchf represent transition angles in the fo
lowing sense. As the vertex anglef in angular elastic plates
increases, there is a companion steady increase in the s
lar character of stresses near the plate vertex~see Fig. 2!.
These stresses go from power singularities in their der
tives while being themselves bounded (g502), to having
power singularities in themselves (g501). Transition
angles with transitional log singularities demark the tw
types of behavior.

We identify such transition angles with the letterT
throughout Fig. 2. Hence for the free-free plate of Fig. 2a,
we haveT1 , T2 , andT3 corresponding tof of f* , p, and
n-
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2p.11 In addition to a logarithmic stress singularity induce
by the pressurep for f5f* here, we have one for the
uniform shearq—a generalization of Levy’s problem in ef
fect. Fields for this log singularity may be found in Demps
@39#.

Another generalization of Levy’s problem is included
Table 7. This occurs when the plate edge without appl
tractions is clamped rather than free. That is, for Conditio
I8– II. Typically there are four transition angles with loga
rithmic stress singularities for this type of configuratio
~Table 7,~2.30! and ~2.31! for generalk; T4–T7 in Fig. 2d
for k52). These angles can be less than 180°~eg, Fig. 3b!.
Fields for associated log singularities may be obtained fr
Sinclair @40#.

One other generalization of Levy’s problem is also i
cluded in Table 7. This occurs when the plate edge with
applied tractions is in contact. That is, for Conditions I8– V.
There is a range of transition angles with logarithmic str
singularities for this type of configuration~Table 7!; ex-
amples are distinguished asT8–T11 in Fig. 2e. Again angles
can be less than 180°. Fields for associated log singular
may be obtained from Sinclair@34#.

Typically, the preceding logarithmic stress singulariti
induced by uniform tractions can instead be produced
cohesive laws. This is because cohesive law conditions
admit rigid body translations which in turn produce unifor
tractions. Thus Conditions VI are generally shown as al
natives to Conditions I8 in Table 7. In this role, the condi
tions given onp andq in Table 7 then apply to correspond
ing uniform tractions within Conditions VI.

Turning to logarithmic stress singularities induced by
homogeneous displacements, we first consider those att
ing contact conditions. That is, Conditions V8– V in Table 7.
For the case of an elastic angular plate being symmetric
indented by a rigid frictionless plate with a sharp corner~Fig.
3c!, the finite rotations of one plate edge with respect to
other produce log singularities. This is so even for sm
rotations (0,Df!1). Local fields can be assembled fro
those for~1.2!. Thus with ther andu coordinates of Fig. 3c,

H s r

su
J 5

4m

11k

Df

f F2 ln r 1 H1
3J G (2.34)

with t ru50, and

ur5
2r

11k

Df

f
@~k21!ln r 21#, uu52ru

Df

f
(2.35)

Evident in ~2.34! is a log singularity which must participat
for any DfÞ0.

Asymptotically the same log singularity as in~2.34! may
be extracted from the global problem of indentation w

11The case off52p is not obviously a transition angle in Fig. 2a. This is because it
is on a branch withg.0 only whenf.2p, a range of vertex angles not included i
Fig. 2a. This branch can be seen in Fig. 2a, Seweryn and Molski@20#, near ‘‘a ’ ’
5f/25p therein.
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rotation of a half-space. This problem is solved in Sect
48.4, Sneddon@46#.12 Such response can be expected to
the case in other configurations wherein a plate vertex a
gets extended or compressed. That is, that there is an iso
logarithmic stress singularity with a coefficient proportion
to the relative amount of rotation and the elastic moduli
the material rotating—see Brock@47# and references therein

Other configurations with logarithmic stress singularit
in response to contact conditions are identified in Table
These can also be viewed as transition stress states as
ated with transition angles~eg, T12 and T13 of Fig. 2c!.
Fields can be obtained from Sinclair@34#.

Logarithmic stress singularities can be induced by in
mogeneous displacements without contact conditions. T
occurs for Conditions II8– II in Table 7. For the case of a
straight boundary (f5p), these are the spurious log sing
larities that can be introduced by the use of shape funct
as boundary conditions in submodeling in finite elem
analysis. An example involving four node elements is sho
in Fig. 3d. Therein, log singularities at the node atO occur
whenever there is a discontinuity in the derivatives of
boundary displacementsu andv. That is, whenever the con
stants are such thatc18Þc28 or c38Þc48 . Fields are given in
Sinclair and Epps@38#. These spurious singularities whe
shape functions are prescribed also occur for higher o
elements and on any smooth submodel boundary~ibid!.

Other configurations with logarithmic stress singularit
when Conditions VI and II8 occur in concert are identified in
Table 7. These, too, are associated with transition angles~eg,
wheng50 in Fig. 2f!. Fields can be obtained from Sincla
@34#.

In closing this section we observe that most of the
singularities identified in Table 7 stem from compliance w
the last of~1.5! for nA54 whenr A53. Consequently, they
do not require repeated roots of the eigenvalue equatio
Indeed, for the most part, repeated roots are specifically
cluded in Table 7. Just exactly when this is done in Tabl
can be determined by comparing it with Table 5, every se
specifications in the latter table corresponding to a repe
root. Moreover, when such exclusions are relaxed and
peated roots admitted, typically ln2 r stress singularities ar
produced, in accordance with the first of~1.5!. The only
exception is for the second set of specifications for Con
tions V–V in Table 5 because the rank requirement is
met.

As an example of a log-squared singularity, we consi
symmetric indentation by a rigid sharp plate as in Fig. 3c, but
now with lateral motion on the contacting edges complet
constrained. That is, Conditions II8– II8 with DfÞ0 and
Df850. Forf5f* of ~2.31! andk51, l51 is a repeated
root ~see Table 5, cf Table 7!. The corresponding fields ca
be assembled from those for~1.1!, ~1.2!, and~1.4!. Algebraic
details can be obtained from Sinclair@34#. In terms of ther
andu coordinates of Fig. 3c, the resulting fields have:
8
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H s r

su
J 5

22mDf

f
*
2 sinf*

@2 cosf* ~ ln2 r 12 ln r 2u2!

H 1

2J @2~cos 2u2cosf* !~ ln r 11!

22u sin 2u1f
*
2 cos 2u#

t ru5
2mDf

f
*
2 sinf*

@sin 2u~2 ln r 1f
*
2 12!12u~cos 2u

2cosf* !# (2.36)

ur5
rDf

f
*
2 sinf*

@2~cosf* 2cos 2u!ln r 12u sin 2u

2f
*
2 cos 2u#

uu5
rDf

f
*
2 sinf*

@2~sin 2u22u cosf* !ln r 12u~cos 2u

2cosf* !1f
*
2 sin 2u#

for k→1. Other fields with log-squared singularities may
obtained from@34,40#.

3 STRESS SINGULARITIES FOR THE IN-PLANE
LOADING OF AN ELASTIC PLATE MADE OF
MULTIPLE MATERIALS

3.1 Formulation and eigenvalue equations

Here we consider extension of the treatment presente
Section 2 to plates made up of multiple elastic sectors.
first formulate this extended class of problems for homo
neous boundary conditions. Then we outline analyti
means that can be used to derive companion eigenv
equations. We stop short of actually presenting all th
equations because of their relative complexity, but do furn
references which contain them subsequently in Section 3

To begin, we continue to use cylindrical polar coordina
r andu with origin O to describe the entire angular region
interestR, with its complete vertex anglef. Now, though,R
is comprised ofN subregions,Ri , i 51,2,...,N, andf of N
subangles,f i ~Fig. 4!. Thus

R5 ø
i 51

N

Ri , f5(
i 51

N

f i (3.1)

where

Ri5$~r ,u!u0,r ,`, u i 21,u,u i% (3.2)

u i5 (
i 851

i

f i 8

with the understandingu050. With these geometric prelimi
naries in place, we can formulate our class of compo
problems as follows.

In general, we seek the planar stress componentss r , su ,
and t ru and their companion displacementsur and uu , as
functions ofr andu throughoutR, satisfying: the appropri-

.4,
12There is a factor ofa21 missing from the stresses given at the end of Section 4
where ‘‘a’’ is as in Fig. 87 therein.
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Fig. 4 Geometry and coordinates for the composite angular ela
plate
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Conditions C are from Rao@48#. They do not appeal as
being particularly physically applicable. They might be inte
preted as the conditions for a surface which is rough to
point of locking and thereby prohibiting slip (ur matched!,
yet on the point of separation (su→0). Such an interface is
sketched in Fig. 5a.

Conditions D are also from Rao@48#. Essentially they are
the same as conditions given in Erdogan and Gupta@49#.
They are the composite counterpart of Conditions IV wh
the latter are interpreted as being for a thin rigid reinforc
ment. As such, they model a thin inclusion which is re
tively stiff compared to its surrounding matrix: It is stif
enough to restrain extension, however it is not so stiff tha
restrains bending.

Conditions E are the composite counterparts of cohes
stress-separation laws. Thusk andk8 are the stiffnesses as
sociated with ‘‘springs’’ resisting normal and lateral sepa
tion on an interface. This action for normal separation
sketched in Fig. 5b where

uu
15 lim

u→u i

uu~u.u i ! (3.3)

with uu
2 defined analogously. In the elastic regime, the st

nesses in these laws should be chosen so that they are
sistent with the elastic constitutive laws of the materi
comprising the interface. When this is done, the adhes
conditions are the physically appropriate ones for a perfe
bonded interface: Conditions A are just a simplification
them obtained by effectively lettingk andk8→` instead of
their elastic values.

Conditions E also admit to other interpretations. One is
a model of a flexibly bonded interface in studies of elas
wave interactions in Jones and Whittier@50#. Another is as a
model for an interface in a composite which permits so
slip in Lene and Leguillon@51# ~for this latter interpretation,
k is effectively taken to be infinite, thoughk8 is finite!.

As in Section 2.1, the preceding formulation is abse
conditions at infinity and insists on bounded displaceme
The basic reasons for these two aspects remain the s
However, we are not aware of a formal extension of t
completeness argument for elastic fields with bounded
placements to composite configurations. Absent such,
regularity conditions~2.5! must be viewed as provisiona
when applied toN-material plates.

stic

Fig. 5 Sketches of interfaces;a! separating locking surfaces~Con-
ditions C!, b! adhesive law action~Conditions E!
atefield equationsof elasticity;interface conditionson inter-
nal plate edges;boundary conditionson external edges if the
plate is open (f,2p), or further interface conditions if it is
closed (f52p); and regularity requirementsat the plate
vertex. The field equations hold onRi ( i 51,2,...,N) and are
given by ~2.2!, ~2.3!, and ~2.4! with m andk in ~2.3! being
replaced bym i andk i , wherem i is the shear modulus of th
material comprisingRi andk i5324n i for plane strain, (3
2n i)/(11n i) for plane stress, withn i being Poisson’s ratio
of this material. The admissible interface conditions a
listed in Table 8 and hold onu5u i with i 51,2,...,N21, if
the plate is open,i 50,1,...,N if the plate is closed (i 50 and
N are for but one set of interface conditions!. The admissible
boundary conditions continue to be as in Table 1 and hold
u50,f if the plate is open. And the regularity requiremen
are the same as~2.5! but now hold onRi , i 51,2,...,N.

The interface conditions of Table 8 merit comment. Co
ditions A are the traditional conditions usually assumed fo
perfectly bonded interface. Conditions B are for contact w
friction governed by Amonton’s law. As such, to be phy
cally applicable they further require that the normal stress
nowhere tensile on the interface, as in~2.6!, and that relative
lateral motion on the interface be opposed by shear tract
there. Quite frequently in singularity analysis the special c
of frictionless (f 50) contact is treated, so we distinguish t
associated conditions by B0 in Table 8. Conditions A and B
are the most common in singularity analysis.

Table 8. Interface conditions for in-plane loading

Identifying
letter

Matched
quantities

Additional
conditions

Physical
description

A su , t ru
ur , uu

Perfectly bonded

B su , t ru
uu

t ru5 f su Contact with friction

B0 su , t ru
uu

t ru50 Frictionless contact

C su , t ru
ur

su50 Separating locking
surfaces

D su
ur , uu

ur50 Thin rigid inclusion

E su , t ru su5k(uu
12uu

2)
t ru5k8(ur

12ur
2)

Adhesive
stress-separation law
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Analysis follows that for single material plates. The co
ditions for singularities with homogeneous bounda
conditions/interface conditions remain as in~1.3!. Now,
though, the order of the determinant involved is typica
increased to

nA54N (3.4)

Hence the algebra involved in expanding determinants
obtain eigenvalue equations in closed form can be consi
ably more extensive. While the eigenvalues from the de
minant could simply be numerically calculated without alg
braic expansion, it is nonetheless useful to obtain
simplified single expression for the eigenvalue equati
Such expressions are more readily used than the raw d
minant when the analysis of further specific configuration
required. In addition, typically such expressions facilita
checking by comparison with special cases/other indep
dent algebraic analysis. To assist in obtaining them, so
approaches for helping with the algebra entailed are offe
in Dempsey and Sinclair@3# and Ying and Katz@52#.13

Once an eigenvalue equation is obtained for
N-material problem (N>2), verification is important. This
is a key concern because of the extent of the algebra
volved. As previously mentioned, sometimes such verifi
tion is afforded by other independent analysis. Otherwise
addition to the obvious check of redoing the algebra, one
also perform numerical checks. That is, evaluate the exp
sion for the eigenvalue equation for diverse values of
parameters involved, then compare with a direct calcula
of the determinant from its originating matrix. Such compa
sons need to take account of any factors removed in sim
fying the expansion of the determinant to obtain the eig
value equation. They should also be carried out for param
values which do not, in themselves, realize simplifications
the determinant.

Once checked, eigenvalue equations need to be solve
singular eigenvalues. Generally this requires numer
analysis. Such numerics are straightforward for the m
part. The eigenvalues so computed can be verified by b
substitution.

At this point, the entire analysis can be further checked
consideringlimiting cases. For bimaterial plates with Condi
tions A, one check is afforded by setting

m15m2 , k15k2 (3.5)

Then the eigenvalues for the corresponding single mate
configuration should result.

A second check for bimaterials is to let one of the tw
materials tend toward being rigid. Consider the fields in~1.1!
under the limitm→`: The displacements go to zero. W
therefore set displacements to zero in the interface condit
of Table 8 to recover the corresponding boundary conditi
of Table 1 for the one remaining deformable sector. Henc
m i→`,
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A→II, B→V, B0→III
(3.6)

C→IV, D→II, E→VI

for R32 i and i 51 or 2. Again singular eigenvalues shou
match single material values.

A third check for bimaterials is to let one of the tw
materials become limp. Now consider the fields in~1.1! un-
der the limit m→0, but first make the exchangesmc1 for
c1 ,mc2 for c2 , and so on to avoid unbounded displacemen
Now the stresses go to zero. We therefore set stresses to
in the interface conditions to recover corresponding bou
ary conditions. Hence asm i→0,

A→I, B→I, B0→I
(3.7)

C→I, D→IV, E→I

for R32 i and i 51 or 2. Again, singular eigenvalues shou
match single material values.

On occasion the eigenvalue equation for a bimateria
insensitive as to whetherm1→` or m2→0, or vice versa.
This simply means it should recover both of the eigenva
equations for the corresponding boundary conditions in~3.6!
and ~3.7! under either limit. For example, the eigenvalu
equation for the interface crack can be written as

05sin2 lpF12
4m̂1m̂2

~m̂11m̂2!2 sin2 lpG (3.8)

where m̂15m11k1m2 and m̂25m21k2m1 . Equation~3.8!
is insensitive as to whetherm1→` or m2→0. From~3.6! and
~3.7!, these limits correspond to A→II or A→I. Thus the
interface crack~I-A-I ! becomes a half-plane with II-I or I-I.
Under either limit,~3.8! recovers the product of the eigen
value equation for a clamped-free half-plane~~2.17! for f
5p) with the eigenvalue equation for the free-free ha
plane ((2.9)3(2.13) forf5p).

In addition to serving as checks, the limiting cases
~3.5!, ~3.6!, and ~3.7! enable a ready first assessment of t
singular stresses involved when faced with a new bimate
configuration which lacks any singularity analysis. It is al
possible to extend the application of these types of limits
configurations involving more than two materials.

For the general numerical analysis of eigenvalues
other than special cases, the parameter space to be sea
is now increased significantly in dimension over that atte
ing configurations comprised of a single material. This
because it now includes multiple vertex angles as well
multiple pairs of elastic moduli.

For bimaterial plates, dimensional analysis reduces
number of independent elastic moduli from four to thre
This number can be further reduced by employing just
two material constantsa andb defined by

Ha
bJ 5

m2S k1H 1

2J 1D2m1S k2H 1

2J 1D
m2~k111!1m1~k211!

(3.9)

The a andb of ~3.9! are given in Dundurs@53#. This article
is a discussion which points out the reduction in the num
of independent elastic constants that can be achieved by

s. At
ently,
the
13It is also possible to employ symbolic manipulation codes to expand determinan
present this usually results in lengthy expressions for the determinant. Consequ
such codes typically only provide an alternative to direct numerical treatment of
original determinant.
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introduction ofa andb into the butt joint problem treated in
Bogy @54#. Equivalenta andb were given earlier in Zak and
Williams @55# to reduce the number of independent elas
constants for the specific problem of a crack terminating p
pendicular to a bimaterial interface. Dundurs@56# establishes
general criteria for bimaterial configurations under whi
such reductions can be made.

To demonstrate how the reduction is effected, we cons
a perfectly bonded bimaterial with stress-free edges~I-A-I !.
Absent a difference in materials, this plate’s stresses
completely independent of elastic moduli, as is any singu
ity exponent~see~2.9! and~2.13! for I-I !. Consequently, only
the traditional matching conditions associated with perf
bonding can introduce any dependence on elastic mod
Without loss of generality, we take the perfectly bonded
terface to occur atu50. Then, from~1.1!, the matching con-
ditions result in the following sparse set of equations:

c1
11lc3

11c3
15c1

21lc3
21c3

2

c1
11lc3

12k1c3
15

m1

m2
~c1

21lc3
22k2c3

2!
(3.10)

c2
11lc4

12c4
15c2

21lc4
22c4

2

c2
11lc4

11k1c4
15

m1

m2
~c2

21lc4
21k2c4

2!

In ~3.10!, the constants associated with the material ab
u50 and modulim1 and k1 are distinguished with a plu
sign, those with material below andm2 andk2 with a minus
sign. Now subtracting the second of~3.10! from the first
givesc3

1 in terms ofc1
2 andc3

2 and the two combinations o
elastic moduli

m22m1

m2~k111!
,

m21k2m1

m2~k111!
(3.11)

Back substituting into the first of~3.10! then givesc1
1 in

terms of c1
2 and c3

2 and the same two combinations. An
performing the same operations on the third and fourth
~3.10! givesc4

1 andc2
1 each in terms ofc2

2 andc4
2 and the

same two combinations. Thus I-A-I stresses and singula
exponents need only depend on the two combinations
elastic moduli given in~3.11!. While these two combination
are closer to those used in Zak and Williams@55# than those
in Dundurs@53#, with some algebra they can be shown to
equivalent toa andb of ~3.9!.

Similar analysis establishes that moduli dependence
be reduced to just that ona andb for bimaterials and with
any of the interface conditions A, B~and therefore B0), or C,
under any combination of boundary conditions involving
III, or IV ~Table 9!. Given the equivalence of cohesive la
conditions with stress-free conditions as far as eigenva
equations are concerned, singular eigenvalues with Co
tions VI in bimaterials and with interface conditions A, B,
C can also be expected to depend only ona andb.

The constantsa andb have seen widespread use for su
configurations since Dundurs@56#, and have come to be
known asDundurs parameters. They admit to physical inter-
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pretation to a degree. For plane stress, substituting form and
k in terms of Young’s modulusE and Poisson’s ration gives:

a5
E22E1

E21E1
, bU5 n22n1

4
E25E1

(3.12)

Thus,a is a normalized measure of the mismatch in Youn
moduli, while b reflects the difference in Poisson’s ratio
when there is no difference in Young’s moduli. Similar r
sults hold for plane strain ifE is exchanged forE/(12n2).

For bimaterials, the ranges 0,m i,`, 0<n i<1/2, andi
51,2 limit accompanyinga andb to within parallelograms
~Dundurs@53#!. These are given by

21,a,1

a21

4
<b<

a11

4
...plane strain (3.13)

3a21

8
<b<

3a11

8
...plane stress

The parallelogram for plane strain encompasses that
plane stress and accordingly is the one to be searched
possible singular eigenvalues are to be identified. Often
search can be readily undertaken using an inverse appro
That is, assuming a specific value of singular eigenvalue
then solving fora andb.

It is also possible to use two sets ofa andb to reduce the
number of independent elastic constants from five to four
trimaterial plates: see Koguchi, Inoue, and Yada@57#. Then,
too, the introduction ofas and bs can enable an invers
approach to be adopted.

3.2 Power singularities identified in the literature

We now review contributions in the literature that have
fected asymptotic assessments of possible stress singula
for N-material plates under in-plane loading, starting w
power singularities. We carry out our review in approxima
order of increasing analytical complexity. We begin with b
material plates and arguably the simplest of these, those
volving ‘‘cracks’’ ~Fig. 6!: Here ‘‘cracks’’ means mathemati
cal slits which may or may not have the traditional stress-f
conditions of fracture mechanics. Next we consider open
material plates~Fig. 7!: Altogether, the geometries in Figs.
and 7 are the ones which have received the most attentio
the literature. Thereafter we conclude the section by revie
ing contributions for other bimaterial plates and some trim
terial ones.

There is considerable duplication within the investigatio
reviewed. We include later references for problems if th
represent a means of verification of earlier research, o
they provide further information on the singular stresses
volved. We do this irrespective of whether or not we c
envisage a situation in which the singular configuration
physically appropriate. We exclude later references oth
wise: A significant number of references are thus exclud
In particular, we do not include later references which a
lyze a global problem whose singular character was pre
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Fig. 6 Bimaterial ‘‘crack’’ geometries analyzed for stress sing
larities: a! interface crack,a8) interface crack ending at a kink o
the interface,b! crack ending orthogonal to an interface,b8) crack
ending obliquely to an interface
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from Tables 1 and 8 are I-A-I. Williams@58# provides both
the eigenvalue equation and resulting complex singular
genvalue in closed form. These results are confirmed in B
@59#. The eigenvalue equation is equivalent to that given
~3.8!, while the associated singularity exponent is

g5
1

2
, h5

1

2p
ln

m̂1

m̂2
(3.14)

wherem̂1 and m̂2 are as in~3.8!.
For the interface crack~Fig. 6a! with clamped conditions

~II-A-II !, Theocaris and Gdoutos@60# give an eigenvalue
equation and complex singular eigenvalue in closed fo
Ting @61# furnishes a different expression for the imagina
part of the complex singular eigenvalue: This latter resul
confirmed in Ballarini@62# and elsewhere.14 The singularity
exponent from Ting@61# for the clamped interface crack i
similar to that for stress-free flanks. It has

g5
1

2
, h5

1

2p
ln

k2m̂1

k1m̂2
(3.15)

Thus the imaginary part differs by at most60.175 from that
in ~3.14!.

For the interface with one flank free and the oth
clamped~I-A-II !, Theocaris and Gdoutos@60# give an eigen-
value equation. Closed-form expressions for singular eig
values are given in Ting@61#.

For the interface crack with contact with friction betwee
the crack flanks~B-A!, Comninou@63# provides an eigen-
value equation. This equation is confirmed in Dempsey a
Sinclair @64#. Singular eigenvalues follow by inspection an
are furnished in Comninou@63#, as is the companion eigen
function. The simpler frictionless case (B0-A) is treated in
the Appendix of Comninou@65#.

For the interface crack when there is contact with fricti
on the interface ahead of a stress-free crack~I-B-I !, Gdoutos
and Theocaris@22# provides an eigenvalue equation in term
of Dundurs parameters. This equation is confirmed
Comninou@66#. An expression for the resulting singular e
genvalues is given in Gdoutos and Theocaris@22#. The sim-
pler frictionless case (I-B0-I) is treated in Dundurs and Le
@67#.

Finally, for the interface crack when an inextensible i
clusion is inserted into the crack~D-A!, Dempsey@21# gives
an eigenvalue equation. Closed-form expressions for sing
eigenfunctions are given in Wu@68#.

We next considerkinked interface cracks. Here the geom-
etry for these cracks is taken to be such that the ‘‘crack’’ s
lies between the two materials but now terminates at a k
on their interface~Fig. 6a8!. This geometry may be viewed
as a generalization of that for the previous straight interf
crack ~Fig. 6a!.

For the kinked interface crack~Fig. 6a8! with stress-free
flanks ~I-A-I !, Bogy @59# furnishes the eigenvalue equatio
in terms of Dundurs parameters. This eigenvalue equatio
confirmed in Dempsey and Sinclair@64#. In addition, Bogy
@59# provides singular eigenvalues for a variety of kink

14It is also implicit in Erdogan and Gupta@49#.

u-

gu-
ously well appreciated—the contribution of this genre of
vestigation lies in the implications of the glob
configuration analyzed, rather than singularity identificati

For the interface crackof Fig. 6a with stress-free crack
flanks, the corresponding boundary and interface conditi

Fig. 7 Open bimaterial plate geometries analyzed for stress si
larities: a! butt joint, a8) oblique butt joint,b! two plates of equal
vertex angles,c! angular plate on a half-plane
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interface cracks. These eigenvalues are numerically de
mined for the most part. Further numerical eigenvalues
given in Chen and Hasebe@69#. Theocaris and Gdoutos@60#
and van Vroonhoven@70# also treat kinked interface crack
with stress-free flanks, but do not use Dundurs paramete

For the kinked interface crack~Fig. 6a8! with clamped
conditions either on one flank~I-A-II ! or both ~II-A-II !,
Theocaris and Gdoutos@60# gives eigenvalue equations an
some singular eigenvalues.

For the kinked interface crack with crack flanks perfec
bonded~A-A !, equation~19! of Bogy and Wang@71# is the
eigenvalue equation in terms of Dundurs parameters. T
equation is confirmed in Dempsey and Sinclair@64# and else-
where. In addition, Bogy and Wang@71# provides singular
eigenvalues for quite a variety of such kinked configuratio
Chen and Nisitani@72# provides the associated eigenfuncti
as well as further eigenvalues. Van Vroonhoven@70#, Pageau,
Joseph, and Biggers@73#, and Chaudhuri, Xie, and Garal
@74# also treat the same kinked configuration without us
Dundurs parameters.

For the kinked interface crack when there is contact w
friction between the crack flanks~B-A!, an eigenvalue equa
tion may be found in Dempsey and Sinclair@64# in terms of
Dundurs parameters. Corresponding singular eigenvalue
a variety of such configurations are numerically determin
in Dempsey@21#. If contact with friction also occurs on th
interface ahead of the crack~B-B!, an eigenvalue equatio
may be found in Dempsey and Sinclair@64# in terms of Dun-
durs parameters.

For the kinked interface crack when Conditions C
Table 8 hold, eigenvalue equations in terms of Dundurs
rameters for A-C, B-C, and C-C may be found in Demps
and Sinclair @64#. Finally, for the kinked interface crac
when Conditions D of Table 8 hold, eigenvalue equations
A-D, B-D, C-D, and D-D are given in Dempsey@21#.

We now consider ‘‘cracks’’terminating at an interface
rather than lying along it. The simplest such configuration
when the crack impinges at a right angle~Fig. 6b!, because
then the geometry is symmetric enabling symmetric and
tisymmetric loading to be analyzed separately. As a con
quence, this special case has received attention by a nu
of investigators in the literature.

For a crackterminating normalto an interface~Fig. 6b!
and having stress-free flanks~I-A-A-I !, Zak and Williams
@55# furnishes an eigenvalue equation for loading which
symmetric about the crack. This equation is in terms of
rameters which are equivalent to those of Dundurs. It is c
firmed in Dempsey and Sinclair@64#.15 Zak and Williams
@55# provides singular eigenvalues. Further singular eig
values are given in Khrapkov@75# and Bogy@76#. The ei-
genvalue equation for antisymmetric loading is given
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Dempsey and Sinclair@64#. This equation is the same as fo
symmetric loading.16

For a crack terminating normal to an interface~Fig. 6b!
with contact with friction between the flanks~B-A-A !,
Comninou and Dundurs@77# furnish an eigenvalue equatio
in terms of Dundurs parameters. Corresponding singular
genvalues are provided: These are independent of the v
of the coefficient of friction.

For a stress-free crack terminating normal to an interf
which is itself in contact with friction~I-B-B-I !, eigenvalue
equations when loading is symmetric or antisymmetric
furnished in Dempsey and Sinclair@64# in terms of Dundurs
parameters. These equations are confirmed in Wijeyew
rema, Dundurs, and Keer@78# which in addition provides
singular eigenvalues for both modes of loading and a ra
of values of the coefficient of friction. The simpler case
frictionless contact (I-B0-B0-I) is treated in Gharpuray, Dun
durs, and Keer@79#.

Finally, for a stress-free crack terminating normal to
interface on which Conditions C or D hold, eigenvalue equ
tions are available as follows: for I-C-C-I with either sym
metric or antisymmetric loading, from Dempsey and Sincl
@64# in terms of Dundurs parameters; for I-D-D-I and eith
symmetric or antisymmetric loading, from Dempsey@21#.

For the more general instance of a crackterminating ob-
liquely ~Fig. 6b8!, several investigations are available. Wh
the crack is free of stress~I-A-A-I !, Bogy @76# furnishes the
eigenvalue equation in terms of Dundurs parameters, as
as singular eigenvalues for a variety of such configuratio
Fenner@80# and Yong-Li @81# compute singular eigenvalue
directly from the determinant without algebraic expansio
though Fenner@80# does establish that eigenvalues depe
on only two material constants. The eigenvalues in Fen
@80# and Yong-Li@81# include ones which agree closely wit
corresponding values in Bogy@76# ~provided a state of plane
stress is assumed in Yong-Li@81#!. Wang and Chen@82#
treats the same configuration: On occasion, the singular
genvalues in Wang and Chen@82# agree with corresponding
values in Bogy@76#, but in some instances there are signi
cant discrepancies between the two.

For a crack terminating obliquely at an interface~Fig.
6b8! with flanks in contact with friction~B-A-A !, Comninou
and Dundurs@77# furnishes an eigenvalue equation in term
of Dundurs parameters. Comninou and Dundurs@77# also
provides singular eigenvalues for varying angles of incide
of the crack and different coefficients of friction.

For a stress-free crack terminating obliquely to an int
face which is itself in contact with friction~I-B-B-I !,
Wijeyewickrema, Dundurs and Keer@78# furnishes an eigen-
value equation in terms of Dundurs parameters. When s
plified for special instances, this equation agrees with oth
in the literature. The simpler case of frictionless conta
(I-B0-B0-I) is treated in Gharpuray, Dundurs, and Keer@79#.

ms

16Taken together, the eigenvalue equation for both symmetric and antisymmetri
sponse is given as a simple squared term in Bogy@76#. This equation appears to hav
an extraneous factor of sin2 lp—see ~28! and ~18! et seq ibid. The same factor is
present in the eigenvalue equation for when the crack terminates obliquely. It w
not appear to lead to errors in eigenvalues reported.
15There would appear to be a typographical error in the equation in Zak and Willi
@55#. All that is needed to correct this error is to replace cosp with coslp.
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There are some further generalizations for stress-
cracks terminating at an interface~I-A-A-I ! which are ana-
lyzed in the literature. If the crack flanks in Fig. 6b8 are
allowed to subtend a finite angle at their tip and thus beco
a reentrant corner, an analysis may be found in Tan
Meguid @83#. If the interface in Fig. 6b8 is allowed to have a
kink at the point where the crack terminates, an analysis m
be found in Pinsan and Zhuping@84#.

We next consideropen bimaterial plateswhich do not, for
the most part, involve cracks~Fig. 7!. We begin with prob-
ably the simplest such configuration, thebutt joint of Fig. 7a.
When the outside surfaces are free of stress and the joi
perfectly bonded~I-A-I !, Bogy @85# furnishes the eigenvalu
equation in terms of Dundurs parameters. This equatio
confirmed in Dempsey and Sinclair@64#. Bogy @85# also pro-
vides singular eigenvalues: These are consistent with co
sponding values in Hein and Erdogan@86#. The ratio of the
shear moduli for which a power singularity first starts
appear is given in Kubo, Ohji, and Nakai@87#.

For the butt joint~Fig. 7a! with stress-free outside surfac
and contact with friction on the interface~I-B-I !, Theocaris
and Gdoutos@88# furnishes the eigenvalue equation in term
of Dundurs parameters. This equation is confirmed in Dem
sey and Sinclair@64# ~the sign of the friction coefficient ha
to be changed because the friction condition is applied o
negativeu-face in Theocaris and Gdoutos@88#, a positive
u-face in Dempsey and Sinclair@64#!. In addition, Theocaris
and Gdoutos@88# provides singular eigenvalues for varyin
coefficients of friction.

The more generaloblique butt jointhere has the interfac
meet the outside free surface at an angle other than 90°~Fig.
7a8!. When the joint is perfectly bonded~I-A-I !, Bogy @59#
furnishes the eigenvalue equation in terms of Dundurs
rameters. This equation is confirmed in Dempsey and S
clair @64#. Singular eigenvalues are also provided in Bo
@59# for several angles of incidence of the interface with t
outside surface. Further singular eigenvalues are give
Hein and Erdogan@86# and Rao@48#. Geometries for which
a power singularity first starts to appear are given in R
@48#, and Kubo, Ohji, and Nakai@87#.

For the oblique butt joint~Fig. 7a8! when the interface is
in contact with friction~I-B-I !, Theocaris and Gdoutos@88#
furnishes the eigenvalue equation in terms of Dundurs
rameters. This equation is confirmed in Dempsey and S
clair @64# ~again, the sign of the friction coefficient has to b
changed!. In addition, Theocaris and Gdoutos@88# provides
singular eigenvalues for several angles of incidence
varying coefficients of friction.

A further open bimaterial geometry investigated in t
literature is that of twoplates with equal vertex angles~Fig.
7b!. When the outside edges of the plates are stress free
they are perfectly bonded along their interface~I-A-I !, Bogy
@59# furnishes the eigenvalue equation. This equation is c
firmed in Dempsey and Sinclair@64#. Singular eigenvalues
are also provided in Bogy@59# for several plate vertex
angles. Further singular eigenvalues are given in Rao@48#.
Geometries for which a power singularity first starts to a
pear are given in Rao@48# and Kubo, Ohji, and Nakai@87#.
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The stress-free bimaterial plate, with constituent pla
with equal vertex angles~Fig. 7b!, can have the interface in
contact with friction~I-B-I !. Theocaris and Gdoutos@88# fur-
nishes the eigenvalue equation in terms of Dundurs par
eters under these conditions. This equation is confirmed
Dempsey and Sinclair@64# ~again, the sign of the friction
coefficient has to be changed!. Theocaris and Gdoutos@88#
also provides singular eigenvalues for several vertex an
and any value of the coefficient of friction.

The last open bimaterial geometry investigated quite f
quently in the literature is that of aplate sector on a half-
plane~Fig. 7c!. When the outside edge of the plate and ha
plane surface exterior to it are free of stress, and the two
perfectly bonded along their interface~I-A-I !, Bogy @59# fur-
nishes the eigenvalue equation in terms of Dundurs par
eters. This eigenvalue equation is confirmed in Gdoutos
Theocaris@22#. Singular eigenvalues when the vertex ang
of the plate is 90° are provided in Bogy@59#. Singular ei-
genvalues for other vertex angles are given in Hein and
dogan@86# and Gdoutos and Theocaris@22#.

For a plate on a half-plane~Fig. 7c! when the plate is in
contact with friction~I-B-I !, Gdoutos and Theocaris@22# fur-
nishes the eigenvalue equation in terms of Dundurs par
eters. This equation is confirmed in Comninou@66#. Singular
eigenvalues are provided in Gdoutos and Theocaris@22# for
plate angles of 60° and 90° and varying friction coefficien
Singular eigenvalues for some other vertex angles are g
in Theocaris and Gdoutos@89#. The simpler case of friction-
less contact (I-B0-I) is treated in Rao@48# and Dundurs and
Lee @67#.

There are some other bimaterial plates with asympto
analysis in the literature. For the perfectly bonded bimate
plate with stress-free edges~I-A-I ! and arbitrary vertex
angles, an eigenvalue equation is given in Aksentian@90#. In
terms of Dundurs parameters, it is furnished in Bogy@59#.
This latter equation is confirmed in Dempsey and Sinc
@64#. If one or both of the edges are clamped instead, resp
tive eigenvalue equations are furnished in Dempsey and
clair @64#. These equations are confirmed in Ying and Ka
@52#.17 The second configuration is also investigated in Ave
sian and Chobanian@91#. If both edges have rigid thin rein
forcements~IV-A-IV !, the eigenvalue equation is given i
Dempsey and Sinclair@64# in terms of Dundurs parameters
and some eigenvalues are given in Rao@48#.

Eigenvalue equations for bimaterial plates with other
terface conditions are available as follows. In terms of Du
durs parameters for stress-free bimaterial plates with dif
ent interface conditions~I-B-I and I-C-I! and arbitrary vertex
angles, eigenvalue equations are given in Dempsey and
clair @64#. In terms of Dundurs parameters for further clos
bimaterial plates~A-C, B-C, and C-C!, eigenvalue equations
are also given in Dempsey and Sinclair@64#. Eigenvalue
equations involving Conditions II and Conditions B or C a
given in Dempsey@21#. Eigenvalue equations involving
Conditions D are also given in Dempsey@21#.

17In addition, these equations appear to be consistent with those given in Akse
@90# providedmi is taken to be Poisson’s number rather than Poisson’s ratio as s
on p 193. That is, providedmi51/n i .
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Turning to thetrimaterial plate, the simplest of such con
figurations occurs when the plates are all comprised of
same material. Picu and Gupta@92# treats a closed plate o
this type with frictionless contact on its interface
(B0-B0-B0). Singular eigenvalues are independent of ela
moduli and are given for a range of vertex angles in Picu
Gupta@92#. Other degenerate trimaterial plates wherein th
are not three distinct materials include the crack geomet
of Figs. 6b andb8 reviewed earlier.

When a trimaterial plate is actually comprised of thr
distinct materials, analysis can be extensive. Nonethel
there are some true trimaterial plates investigated in the
erature. For an open trimaterial plate with bonded interfa
and stress-free/clamped exterior edges~I-A-A-I, I-A-A-II, or
II-A-A-II !, Ying and Katz@52# derives eigenvalue equation
An eigenvalue equation for the first of these configuratio
~I-A-A-I ! is given in terms of pairs of Dundurs parameters
Koguchi, Inoue, and Yada@57#, as are some resulting singu
lar eigenvalues. Further singular eigenvalues from the s
equation are presented in Inoue and Koguchi@93#. Additional
singular eigenvalues are given in Pageau, Joseph, and
gers @73#, together with some singular eigenvalues for t
closed and bonded trimaterial plate~A-A-A !. The nature of
associated singular eigenfunctions for I-A-A-I is consider
in Pageau et al@94#.

In closing, we comment on the one remaining set of
terface conditions in Table 8, Conditions E. With these ad
sive stress-separation laws instead of the classical perfe
bonded conditions, some reduction in the occurrence
stress singularities is to be expected. This is indicated
limiting cases with single-material plates. However, this
yet to be formally established in general.

3.3 Log singularities identified in the literature

Here we review contributions to the literature that have
ymptotically established the possibility of logarithmic term
in stress singularities forN-material plates under in-plan
loading. We start with when such singularities can occur w
homogeneous boundary conditions, then consider their
currence with inhomogeneous boundary conditions. We
cus on bimaterial plates and follow the same order of geo
etries as previously in Section 3.2.

Before beginning this review, we recap the requireme
for logarithmic participation in bimaterial plates becau
these continue to be incorrectly stated/applied in the lite
ture. Forhomogeneous boundary conditionsas in Table 1,
conditions for logarithmic intensification of power singula
ties are as in the second of~1.3! with nA58 for bimaterials.
For the case of pure logarithmic singularities, conditions
as in the penultimate of~1.3! with nA58. For inhomoge-
neous boundary conditionsas in Table 6, conditions for a
log-squared singularity are as in the first of~1.5! for nA58.
For the case of pure logarithmic singularities, conditions
as in the last two of~1.5! for nA58. Throughout these con
ditions for bimaterials, corresponding inequalities forĉs and
c̃s are to hold on at least oneRi ( i 51,2), while equations
for c̃s are to hold on both.

For a pure logarithmic singularity, conditions other th
the
f
s
tic
nd
re

ries

e
ess,
lit-

ces

.
ns
in
-
me

Big-
he

ed

in-
e-
tly-
of

via
is

s-
s

ith
oc-
fo-
m-

nts
se
ra-

i-

re

re

n

the preceding continue to be advanced in the literature~eg,
Murakami @95# and Wijeyewickrema et al@78#!. Typically
these have

D5
]D

]l
50 for l51 (3.16)

While appealing in its simplicity,~3.16! is not sufficientfor a
log singularity withhomogeneousboundary conditions, and
it is not necessaryfor a log singularity withinhomogeneous
boundary conditions. To remove any doubt that this is so,
furnish some demonstrations.

As a first demonstration of~3.16! not being sufficient with
homogeneous boundary conditions, we consider the inter
crack ~Fig. 6a! with crack flanks perfectly bonded togethe
That is, Conditions A hold both ahead of and in back of t
‘‘crack’’ tip. The determinant for this case is given in equ
tion ~25!, Bogy and Wang@71#. In terms of the eigenvaluel,
this has

D52~12b2!2 sin4 lp (3.17)

ClearlyD of ~3.17! satisfies~3.16!. The coefficient matrixA
which leads toD can be assembled from~1.1! on applying
Conditions A onu50,p. Checking the rank of this matrix
reveals that it drops to four whenl51. Thus~1.3! requires
that the first four derivatives ofD be zero whenl51. TheD
of ~3.17! has just its first three derivatives being zero wh
l51. Consequently, no log singularity is possible for th
configuration despite the fact that~3.16! is met. This is what
one would expect because this configuration has two p
fectly bonded half-planes with no discontinuities in eith
boundary geometry or boundary conditions.

As a second demonstration of~3.16! not being sufficient,
we consider the interface crack~Fig. 6a!, but now with the
crack flanks in frictionless contact. The determinant for t
configuration is given as equation~54!, Comninou@65#. This
equation has a multiplicative factor which cannot be ze
removed, and otherwise is

D5sin3 lp coslp (3.18)

Clearly D of ~3.18! satisfies~3.16!. However, checking the
rank of the corresponding coefficient matrix reveals it dro
to five whenl51. Thus~1.3! requires the first three deriva
tives of D to be zero whenl51. TheD of ~3.18! has only
the first two of its derivatives zero whenl51. Consequently,
no log singularity is possible for this configuration desp
the fact that~3.16! is met. This absence of logarithmic stre
singularities is consistent with the results in Table 5 for t
two limiting cases of~3.6! and ~3.7!.

As a third and final demonstration of~3.16! not being
sufficient, we consider a crack terminating normal to an
terface~Fig. 6b with I-A-A-I !. The determinant in this in-
stance may be obtained from Dempsey and Sinclair@64# as

D5sin2 lp@a1b222l2~a2b!~12b!

1~12b2!coslp#2 (3.19)

ClearlyD of ~3.19! complies with~3.16!. This leads Koguchi
et al @57# to conclude that log singularities are possible f
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any values ofa and b. However, checking the rank of th
coefficient matrix reveals that it drops to ten. Because
bimaterial is a degenerate trimaterial (nA512), this means
that the first two derivatives ofD must be zero atl51 for
a log singularity in~1.3!. The D of ~3.19! has only its first
derivative zero atl51. Consequently, no log singularit
is possible here. This absence of logarithmic stress singu
ties is consistent with results in Table 5 for limitin
cases.18

Demonstrations of~3.16! not being necessary for log sin
gularities with inhomogeneous boundary conditions abou
They can be found in Table 7 as limiting cases.

In the literature,~3.16! is typically used with homoge
neous boundary conditions. The configurations identified
this way may admit the possibility of a log singularity, o
they may not. The other requirements in~1.3! need to be
further checked to decide. Absent such checks, the situa
remains ambiguous in this regard and, accordingly, we o
configurations so identified in the review that follows. As
result, to date in the literature the number of bimaterial pla
identified as having pure logarithmic singularities is few
than that for plates comprised of a single material. In fa
one would expect the opposite to be the case given the e
parameters available with bimaterials. This probably me
that there are a significant number of bimaterials which
have log singularities that are, as yet, not identified explici

We begin with instances oflogarithmic intensificationof
power singularities underhomogeneous boundary cond
tions. Quite a variety of such instances are identified
Dempsey@33#. Typically they occur at transitions from com
plex to real eigenvalues~cf, Section 2.3!. For the traditional
conditions for perfect bonding on the interface while ou
edges are stress free~I-A-I !, the following bimaterial geom-
etries are determined as having the possibility of pow
logarithmic stress singularities in Dempsey@33#: Figs. 6a8
andb8, and Figs. 7a8, b, andc. Other instances are identifie
for closed bimaterial plates. These are for perfect bond
~A-A ! and the geometry of Fig. 6a8, and for frictional contact
with perfect bonding~B-A-A ! and the geometry of Fig. 6b8.
The last is really a degenerate trimaterial.

Turning to pure logarithmic singularitieswith homoge-
neous boundary conditions, there are few instances identifie
in the literature wherein~1.3! is known to be satisfied fo
bimaterials. Two such are for two sets of specifications
the oblique butt joint~Fig. 7a8! with stress-free conditions
~I-A-I ! which are given in Chen@96#. Some further instance
are given in Dempsey@33# for the following configurations:
Fig. 6a8 with A-A, and Fig. 7a8 with I-A-I. Additionalin-
stances may be inferred from Dempsey@33# for the configu-
ration of Fig. 6b8 with B-A-A.19
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Of course there have to be many more instances of p
logarithmic singularities than this for bimaterials. This is a
parent from limiting cases. For example, for the kinked cra
~Fig. 6a8! with stress-free flanks~I-A-I !, the limits in ~3.6!
and ~3.7! lead to I-II and I-I, respectively, for a plate of on
material. Then Table 5, for I or VI-II, shows there is a lo
singularity for the first of these limits~the actual vertex angle
involved isf5101.2° whenk52.85). Other configurations
with pure logarithmic singularities for limiting cases are: Fi
6a8 with I-A-II, II-A-II, I-B-I, A-A, A-B, A-D, B-B, B-C,
B-D, and D-D; Fig. 6b8 with I-A-A-I, B-A-A, and I-B-B-I;
and Fig. 7a8, b, andc with I-A-I and I-B-I.

For pure logarithmic singularitieswith inhomogeneous
boundary conditions, Bogy @85# provides an example for the
butt joint subjected to tractions. Asymptotically at the join
the configuration is as in Fig. 8 whereinpi and qi are the
constant pressure and uniform shear traction on materiai ( i
51,2). In Bogy@85#, a pure log singularity is found to resu
if

a50 or a52bÞ61

q1Þq2 (3.20)

In addition, a pure log singularity is found to result if

a52bÞ0

p1
21p2

2Þ0, p1~11a!Þp2~12a! (3.21)

Complete stress fields corresponding to~3.20! and~3.21! are
given in equations~4.6! and ~4.7!, Bogy @85#.

The configurations admitted by~3.21! include ones with
continuous tractions across the joint. Here, then, the sin
larity is associated with the discontinuity in material modu
Generally this added material discontinuity increases the
currence of stress singularities over that for a plate made
single material. However, this does not always have to be
For the limited cases ofa51 andb5 1

2 or a521 andb
52 1

2, there is no log singularity associated with a step sh
Here, then, the singularity associated with the discontinu
in the applied shear traction is being offset by that associa
with the discontinuity in material moduli.

ulari-

c
can

Fig. 8 Butt joint subjected to uniform tractions
18For D of ~3.19!, l51 can be a root of multiplicity 3 for special values ofa andb:
Further checking of these special cases reveals that they too do not have log sing
ties.
19The thrust of Dempsey@33# is to gain an appreciation of when power-logarithm
singularities occur. Hence pure log singularities are not explicitly identified and
only be inferred as limits in this paper.



e
e

y

o

f

l

d

l
f

a

a

l
r

e:

in-
6

-

rre-

or
gle
dge
ider

ri-

er-
o
n
s
ear

Appl Mech Rev vol 57, no 5, September 2004 Sinclair: Stress singularities in classical elasticity–II 407
The pure logarithmic singularities associated with~3.20!
and ~3.21! both occur whenl51 is a repeated root of th
eigenvalue equation and~3.16! is indeed satisfied for thes
instances. So how is this consistent with the conditions
~1.5! for a log singularity with inhomogeneous bounda
conditions? For that matter, because any configuration w
inhomogeneous boundary conditions can also include the
sponse with corresponding homogeneous boundary co
tions, how is it consistent with the conditions of~1.3! for a
log singularity with homogeneous boundary conditions?

Answering the second question first, we considera50
anda52b in turn. Fora50, assemblingA reveals that its
rank is seven. Hence the first part of the conditions in~1.3!
for a log singularity is actually satisfied. However, asse
bling associated fields reveals thatĉ1 , ĉ2 , andĉ3 of ~1.2! are
all zero. Therefore~1.3! has that there is no log singularit
for homogeneous boundary conditions whena50. For a
52b, the rank ofA drops to six. Then~1.3! requires that, in
addition to ~3.16! being met,]2D/]l250. This is not the
case for theD here. Therefore~1.3! has that there is no log
singularity for homogeneous boundary conditions whena
52b. Thus there is no pure logarithmic singularity whats
ever for this configuration with homogeneous boundary c
ditions. The fields given in Bogy@85# in equations~4.6! and
~4.7! are consistent with this conclusion.

Answering the first question second, we consider~3.20!
and~3.21! in turn. For~3.20!, we find that it is an instance o
compliance with the second of~1.5!. Then sincer A can equal
nA21 ~for a50), ~3.16! can be satisfied too. For~3.21!, we
find that it is an instance of compliance with the last of~1.5!.
Then, sincer A5nA22, ~3.16! can be satisfied too. The field
given in Bogy @85# are again consistent with these conc
sions.

With respect to inhomogeneous boundary conditions,
response of the butt joint is analogous to that of a plate w
uniform shear tractions. For this last, as the plate ver
angle varies, regular solutions withr 0 stresses break down
This results in their requiring auxiliary fields for the verte
angle with the breakdown. This in turn leads to a logarithm
stress singularity for this angle. A transition between the t
types of solutions can be achieved by suitably supplemen
the regularr 0 stresses for inhomogeneous boundary con
tions with stresses for corresponding homogeneous boun
conditions. In effect, this is the approach developed
Dempsey@39# and Ting@44#. For the butt joint, the only rea
difference is that material moduli are varying instead o
vertex angle: Otherwise the same evolution occurs.

Apparently only two further instances of pure logarithm
singularities for bimaterials with inhomogeneous bound
conditions are identified in the open literature. These are
the oblique butt joint~Fig. 7a8! and may be found in Chen
@96#. Of course, there have to be many more instances of
singularities for bimaterials with inhomogeneous bound
conditions than the total reported here. Again, this is app
ent from limiting cases. For the kinked crack~Fig. 6a8! with
tractions applied to its flanks (I8-A-I 8), the limits in ~3.6!
and ~3.7! lead to I8– II and I8– I, respectively, for a single
material plate. Then Table 7 has logarithmic stress singu
ties for both limiting cases. Other kinked crack configu
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tions with pure log singularities for limiting cases ar
I8-IC-I, I8-IC-II, I 8-IC-V, II 8-IC-II, II 8-IC-V, V8-IĈ-V,
where IC denotes interface conditions A, B, C, or D, ICˆ the
same set minus C. Similarly, other limiting cases of log s
gularities can be identified for further geometries in Fig.
and Fig. 7.

Finally, for log-squared singularitieswith inhomogeneous
boundary conditions, two instances are identified for the ob
lique butt joint ~Fig. 7a8! in Chen @96#. Quite a number of
other instances can be identified as limiting cases co
sponding to~3.6! and ~3.7! via Tables 5 and 7~see the dis-
cussion at the end of Section 2.4!.

4 STRESS SINGULARITIES FOR OUT-OF-PLANE
LOADING

4.1 Out-of-plane shear of an elastic wedge made of a
single material

Here we follow the order of presentation in Section 2 f
in-plane loading when we treat out-of-plane shear of sin
material wedges. Thus we begin by considering a we
under homogeneous boundary conditions, then we cons
inhomogeneous boundary conditions.

The elastic wedge of interest can be framed with cylind
cal polar coordinatesr , u, andz with origin O ~Fig. 9!. It has
indefinite extent in ther andz directions while subtending an
anglef at its vertex. The only existing displacement ent
tained is in thez directionuz . This displacement is taken t
be independent ofz. Consequently field equations hold o
the 2D regionR of ~2.1!. With these geometric preliminarie
in place, we can formulate the class of out-of-plane sh
problems of initial interest as next.

In general, we seek the out-of-plane shear stressest rz and
tuz , and their companion out-of-plane displacementuz , as
functions of r and u throughoutR, satisfying: thestress
equation of equilibriumin the absence of body forces,

]t rz

]r
1

t rz

r
1

1

r

]tuz

]u
50 (4.1)

on R; the stress-displacement relationsfor a linear elastic
wedge which is both homogeneous and isotropic,

Fig. 9 Geometry and coordinates for the elastic wedge
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Table 9. Boundary conditions for out-of-plane shear

Identifying
Roman numeral

Boundary
condition

Physical
description

Is tuz50 Stress free
II s uz50 Clamped
III s tuz5kuz Cohesive stress-separation la
Is8 tuz5q Uniform shear
II s8 uz5rDfs Linear displacement
o
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H t rz

tuz
J 5lr l21S H c1

2c2
J sinlu1 H c2

c1
J coslu D

(4.4)

uz5
r l

m
~c1 sinlu1c2 coslu!

We are now in a position to discuss further the comple
ness of fields complying with~4.3!. Given that uz does in-
deed admit to representation by combinations of functio
which are separable inr and u, the completeness of suc
functions complying with~4.3! can be argued as follows. A
the outset we draw on Sturm-Liouville theory to establish
completeness of the fields in~4.4! for homogeneousbound-
ary conditions whenl is real.20 Then we observe thatt rz or
uz can equally well be represented on a circular arc by se
from ~4.4! with eitherl never negative orl never positive.
As a result, we must have a complete representation jus
l never negative. Hence we must have a complete repre
tation with bounded displacements, provided these displa
ments are separable.

Eigenvalue equationsare obtained on introducing th
fields of ~4.4! into pairs of homogeneous boundary cond
tions drawn from Table 9. This leads to, fornonmixed prob-
lems(Is or III s– Is or III s , IIs– IIs),

sinlf50 (4.5)

and formixed problems(Is or III s– IIs),

coslf50 (4.6)

Equation~4.5! for Is– Is has an associated torsion proble
which is analyzed in Saint-Venant@98#. This problem is an-
tisymmetric about the wedge bisector so that only the a
symmetric contribution to~4.5! is involved ~viz, coslf/2
50). However, this is the part of~4.5! which leads to sin-
gular eigenvalues. Moreover, given that the torsion probl
Is– Is can be solved via the warping displacement~Neumann
problem! or via a stress function~Poisson’s equation with
Dirichlet conditions!, this equation also holds for IIs– IIs .
Equation~4.6! for Is– IIs can also be viewed as for a torsio
problem if a vertex angle of 2f is taken. Equation~4.6! for
Is– IIs is explicitly obtained as a limiting case for a bimateri
wedge in Aksentian@90#. The equivalence of IIIs with Is as
far as both eigenvalue equations are concerned is argue
Sinclair @99#.

In accordance with~4.3!, the range of eigenvalues fo
admissible power singularities of the form of~4.4! is as pre-
viously ~ie, 0,l,1). Such singular eigenvalues can be d
termined in closed form for the elementary transcende
equations represented by~4.5! and ~4.6!. Reintroducing the
singularity exponentg512l, we thus have the following
admissible power singularities: for nonmixed problems,

g512
p

f
~p,f<2p! (4.7)

and for mixed problems,

g512
p

2f S p

2
,f<2p D

20See, eg, Ch V, Courant and Hilbert@97#.
t rz5m
]uz

]r
, tuz5

m

r

]uz

]u
(4.2)

on R, whereinm continues as the shear modulus; any one
the first three admissiblehomogeneous boundary condition
in Table 9 ~identified as Is , IIs , and IIIs therein! on the
wedge face atu50, together with another such condition o
the wedge face atu5f, for 0,r ,`; and theregularity
requirementat the wedge vertex

uz5O~1! as r→0 (4.3)

on R. In particular, we are interested in the local behavior
the fields complying with the foregoing in the vicinity of th
wedge vertexO.

Several comments on the preceding are in order. The
of-plane displacement admitted with its shear stresse
sometimes termed a state ofantiplane shear. This state is
physically representative of the response at cracks and o
geometric features under Mode III loading. The displacem
uz is also physically representative of thewarping produced
when noncircular prismatic bars are subjected to torque
this role, it complements theuu displacement component fo
pure torsion~see, eg, Ch 10, Timoshenko and Goodier@42#!.

The homogeneousboundary conditionsof Table 9 have
in-plane counterparts in Table 1 in accordance with: I fors ,
II for II s , and VI for IIIs . It is possible as well to interpret Is

as the analogue of III, and IIs as the analogue of IV. If the
stiffnessk in III s is let to tend to zero, Is is recovered, while
if it is let to tend to infinity, IIs is recovered. Otherwisek is
positive onu50, negative onu5f.

As in Section 2.1, there are noconditions at infinityor
length scalepresent in the formulation. For the reasons a
vanced in Section 2.1, this is appropriate in an asympt
treatment. Further, regarding theregularity requirement
~4.3!, we remark that this can be included provided the
sulting formulation can be shown to be complete. We c
sider this completeness issue further once we have co
sponding basic fields established. Given completeness
singular fields admitted by~4.3! have unbounded stresses y
bounded displacements.

Analysis is straightforward and parallels that outlined
Section 1. Indeed, it is simpler than that in Section 1 beca
the problem at hand is harmonic rather than biharmonic.
see this, substitute~4.2! into ~4.1!. This showsuz to be har-
monic. Therefore it admits to separation of variables. T
leads to, as ourbasic fields for out-of-plane shear,
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Fig. 10 Singularity exponents in out-of-plane shear for vary
wedge angles
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are no repeated roots. Hence~1.3! ~with nA52 therein! has
that there are no singularities other than those of Fig. 10 w
homogeneous boundary conditions.

This need not be the case forinhomogeneous boundar
conditions. For uniform tractions/linear displacements, log
rithmic stress singularities are possible.21 The specific inho-
mogeneous boundary conditions considered to this end
included in Table 9, distinguished by primes. Hereinq con-
tinues as a constant shear traction for Is8 , while Dfs is the
out-of-plane angle rotated through by IIs8 . For these condi-
tions, use of the basic fields of~4.4! leads to systems which
in general, cannot be solved whenl51 is an eigenvalue.
Thus we need auxiliary fields. These follow from~4.4! on
differentiating with respect tol. For the stress componentt rz

this leads to, as an example of ourauxiliary fields for out-of-
plane shear,

t rz5r l21@~11l ln r !~ ĉ1 sinlu1 ĉ2 coslu!

1lu~ ĉ1 coslu2 ĉ2 sinlu!# (4.9)

In ~4.9!, carets atop constants continue to indicate they
not have to be the same as in~4.4!. Using the full fields
associated with~4.9!, in conjunction with those of~4.4!, then
enables solution. Hence a log singularity forl51 ~see
~4.9!!. This occurs when the last of~1.5! holds for nA52.
Now, though, the conditions on the constants within auxilia
fields can be dispensed with. This is because a logarith
stress singularity attends any nontrivialc in the auxiliary
fields for out-of-plane shear~see~4.9!!. Configurations that
do comply with the foregoing requirements and thereby
have log singularities are given in Table 10.22

In Table 10, the logarithmic stress singularity on a ha
plane with Is8– Is or IIs8– II can be anticipated from the
asymptotic analysis in Wasow@103#. For Is8– Is and bothf
5p andf52p, these log singularities are fully develope
in Ting @104#, together with a reasonable transition for var
ing vertex angles throughp and 2p effected by means of the
approach of Ting@44#. For other configurations in Table 10
a similar analysis may be found in Sinclair@105#. For the
most part, IIIs is equivalent to Is8 in Table 10 because it ca
produce a uniform shear in response to a rigid body tran

ng

Table 10. Single material configurations in out-of-plane shear with
logarithmic singularities

Boundary conditions
on uÄ0,f Configuration specifications

Is8 or III s– Is f5p, 2p, qÞ0
II s8– IIs f5p, 2p, DfsÞ0
III s– III s f52p
Is8 or III s– IIs8 f5p/2, 3p/2, qÞ0, DfsÞ0
ts to

ould

ed

le

omo-
g512
3p

2f S 3p

2
,f<2p D (4.8)

The singularity exponents of~4.7! and ~4.8! are plotted in
Fig. 10 whereint denotes either shear.

For nonmixed problems, stress singularities are only
sociated with reentrant corners. For prismatic bars under
sion, this is recognized in Section 710, Thomson and T
@100#, and in Saint-Venant@101#. Forf5360° with free-free
conditions, the nonmixed curve of Fig. 10 recovers
inverse-square-root singularity of a traditional stress-f
crack under Mode III loading. The associated eigenfunct
is given in Irwin and Kies@102#. For f5270°, the non-
mixed curve produces the singularity as for a keyway in
shaft transmitting torque. For other vertex angles, the cu
for nonmixed problems in Fig. 10 is similar in character
the upper curves in Fig. 2a which are for corresponding non
mixed problems with in-plane loading.

For mixed problems, a broader range of vertex ang
leads to stress singularities~Fig. 10!. This is similar to the
corresponding situation with in-plane loading~Fig. 2a cf 2d!.
Furthermore, the general character of the mixed curves w
out-of-plane shear~Fig. 10! is quite similar to those forg for
k52 with in-plane loading~Fig. 2d!.

In light of the preceding discussion regarding comple
ness, it would seem to be unlikely for there to be anyth
other than real power singularities for out-of-plane shear o
wedge under homogeneous boundary conditions. This ex
tation is in fact met by the eigenvalue equations~4.5! and
~4.6!. Separating real and imaginary parts in these equat
reveals that there are no complex eigenvalues. In addit
differentiating these equations with respect tol reveals there
te-
ng
f a
ec-

ons
ion,

21As in Section 2.4, it is possible for nonsingular inhomogeneous displacemen
produce other than logarithmic singularities, eg,uz}Ar . Further, if these singularities
coincide with ones for corresponding homogeneous boundary conditions, they c
possibly be logarithmically intensified.
22The full fields for Eq.~4.9! do give rise to a logarithmic displacement field associat
with homogeneous boundary conditions. This occurs forl50, c150, andc25F/f
and is for a line-load of strengthF in out-of-plane shear. The correspondingtuz is zero,
so that stress-free conditions are obeyed by this stress field for any vertex angf.
However, the associated logarithmic displacement field is not in compliance with~4.3!,
so that our original statement concerning the absence of logarithmic terms with h
geneous boundary conditions still holds.
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Table 11. Interface conditions for out-of-plane shear

Identifying
letter

Matched
quantities

Additional
conditions

Physical
description

As tuz , uz Perfectly bonded
Bs tuz tuz50 Frictionless contact
Ds uz uz50 Thin rigid inclusion
Es tuz tuz5k(uz

12uz
2) Adhesive stress-separation la
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As in Section 4.1, the preceding formulation is abse
conditions at infinity and insists on bounded displaceme
The basic reasons for these two aspects remain the same
limited completeness argument advanced in Section 4.1
be extended to composite configurations with interface c
ditions As , Bs , or Ds : for these conditions, composite con
figurations are merely equivalent to multiple regular Stur
Liouville problems.

Conditions As have received by far the most attention
the literature. Accordingly, we focus attention on these tra
tional conditions for a perfectly bonded interface next. W
comment briefly on the nature of results for other interfa
conditions at the end of the section.

We begin our review of perfectly bonded wedges made
multiple materials by consideringbimaterials. Analysis for
this class of composite wedge is straightforward and co
pact. This is because the order of the coefficient matri
involved is only four~cf 8 for most in-plane bimaterials!, and
eigenvalue equations depend on a single material param
Here

m̄5m1 /m2 (4.10)

serves as this single material constant.
Eigenvalue equationsfor bimaterial wedges in out-of-

plane shear are available in the literature as follows. For
open bimaterial wedge and Conditions Is2As2Is , IIs2As

2II s , and Is2As2II s eigenvalue equations are obtained
Aksentian @90#. The first two of these equations are co
firmed both in Rao@48# and in Sinclair@99#. The last eigen-
value equation for Is2As2II s is confirmed both in Sinclair
@99# and in Ma and Hour@106#. For a crack terminating at an
interface~Fig. 6b8! and Conditions Is2As2As2Is , an ei-
genvalue equation is given in Fenner@80#. For the closed
bimaterial wedge and Conditions As2As , an eigenvalue
equation is given in Sinclair@99#. This eigenvalue equation
in confirmed in Pageauet al @73#.

Eigenvaluesfor the dominant power singularity for Is

2As2Is are given in a compact graphical form in Rao@48#
for any values off1 and f2 , but for a somewhat limited
range ofm̄. Eigenvalues for a more extensive range ofm̄ but
limited values off1 andf2 are given in Sinclair@99#: The
f1 and f2 treated therein correspond to the geometries
Fig. 6a, a8, and Fig. 7. Secondary power singularities a
also given in Sinclair@99#.

There is a certain duality between Is2As2Is and IIs
2As2II s which enables singular eigenvalues for the latter
be directly obtained from eigenvalues for the former. Spec
cally this is done by entering graphs of eigenvalues fors

2As2Is with the truem̄ replaced by 1/m̄ ~see Sinclair@99#
for further explanation!. For both types of configuration, th
discontinuity of an abrupt change in shear modulus attend
Conditions As means it is no longer necessary to have
reentrant corner for singular stresses to be possible.

Singular eigenvalues for Is2As2II s and geometries as in
Fig. 6a, a8, and Fig. 7 are given in Sinclair@99#. Some fur-
ther eigenvalues for Is2As2II s are provided in Ma and
tion. Under these circumstances, the requirements place
q for Is8 apply to the uniform shear within IIIs .

4.2 Out-of-plane shear of an elastic wedge made of mul
tiple materials

In this section we consider extension of the treatment in
preceding section to wedges made of multiple materials.
first formulate this extended class of problems. Thereafter
review contributions to the literature which identify attenda
stress singularities under homogeneous boundary condit
We then discuss the further singularities possible with in
mogeneous boundary conditions.

To begin, we continue to use cylindrical polar coord
nates,r , u, andz with origin O to describe the entire wedg
of interest with its complete vertex anglef. Now, though,
the wedge is comprised ofN prismatic subwedges with ver
tex anglesf i , i 51,2,...,N. Each of these subwedges is
indefinite extent in both ther andz directions. We also con
tinue to entertain displacement in thez direction alone, with
this displacement being independent ofz. Consequently,
field equations hold on the 2D regionR of ~3.1! ~Fig. 4!.
With these geometric preliminaries in place, we can form
late the class of out-of-plane shear problems of initial inter
as next.

In general, we seek the out-of-plane shear stressest rz and
tuz and their companion out-of-plane displacementuz as
functions ofr andu throughoutR, satisfying: the appropri-
atefield equationsof elasticity;interface conditionson inter-
nal wedge faces;boundary conditionson external faces if the
wedge is open (f,2p), or further interface conditions if it
is closed (f52p); and a regularity requirementat the
wedge vertex. The field equations hold onRi of ~3.2!, i
51,2,...,N, and are given by~4.1! and ~4.2!, with m in the
latter being replaced bym i , the shear modulus of the mate
rial comprisingRi . The admissible interface conditions a
listed in Table 11 and hold onu5u i of ~3.2!, with i
51,2,...,N21 if the wedge is open,i 50,1,...,N if the
wedge is closed (i 50 andN are for but one set of interfac
conditions!. The admissible boundary conditions continue
be as in Table 9 and hold onu50, f if the wedge is open.
And the regularity requirement is the same as~4.3!, but now
holds onRi , i 51,2,...,N.

The interface conditions of Table 11 have in-plane co
terparts in Table 8 as follows: A for As , B0 for Bs , D for Ds ,
and E for Es . There is no counterpart to Conditions C
Table 8 in out-of-plane shear. In Conditions Es , k is the
stiffness in the adhesive stress-separation law anduz

1 anduz
2

are defined analogously touu
1 of ~3.3!. In reality, Conditions

As for perfect bonding are just a simplification of Conditio
Es obtained on lettingk tend to infinity.
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Table 12. Bimaterial configurations in out-of-plane shear with loga-
rithmic singularities

Boundary conditions
on uÄ0,f Configuration specifications

Is8 or III s– Is8 or III s f15f25p, q1Þq2
f15f25p/2, q1Þ2m̄q2
f15p/2, f253p/2, q1Þm̄q2
m̄52cotf1 tanf2, q1 cosf2Þq2 cosf1

II s8– IIs8 f15f15p, Df1ÞDf2
f15f25p/2, m1Df1Þ2m2Df2
f15p/2, f253p/2, m1Df1Þm2Df2
m̄52tanf1 cotf2, m̄Df1 sinf2Þ2Df2 sinf1

Is8 or III s– IIs8 f15p, f25p/2, q1Þm2Df2
f15p/2, f25p, q1Þm1Df2
m̄5cotf1 cotf2, q1 sinf2Þ2m2Df2 cosf1
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can act like Is8 by virtue of uniform shears being induced
response to a rigid body translation. In this role, restrictio
on q1 andq2 in Table 12 then apply to the uniform shears
induced.

By way of examples of the logarithmic stress singularit
of Table 12, Fig. 11 illustrates Is82As2Is8 for a half-space
and for a bimaterial wedge with vertex angles of 30° a
120°. For the first~Fig. 11a!, Table 12 hasm̄51 and q1

Þ2q2 when f11f25p. Hence there is no material dis
continuity. Here, then, the discontinuity in the shear tract
by itself has an associated log singularity~this is the configu-
ration analyzed in Ting@104#!. For the second~Fig. 11b!,
Table 12 hasm̄53 and q1Þ2A38q2 when f1530° and
f25120°. Hence we can takeq152q and q25q so that
there is no discontinuity in the shear traction. Here, then,
discontinuity in material moduli by itself has an associat
log singularity. Notice, too, that there need not be a reentr
corner present for a log singularity with either of these d
continuities.

There are a few analyses oftrimaterial wedgesin out-of-
plane shear available in the literature. The simplest dege
ate trimaterial treated is a stress-free crack in one mate
terminating normal to an interface with a second mate
(Is2As2As2Is and a cross section as in Fig. 6b!. Singular
eigenvalues are determined in closed form in Barnett@108#.
These eigenvalues are confirmed in Fenner@80#. When the
crack is other than perpendicular to the interface (Is2As

2As2Is and Fig. 6b8!, the eigenvalue equation for this de
generate trimaterial is given in Sendeckyj@109#. This equa-
tion is confirmed in Fenner@80# which also furnishes some
singular eigenvalues. True trimaterial wedges with cross s
tions as in Fig. 6b and either stress-free crack flanks (s

2As2As2Is) or bonded ones (As2As2As) are analyzed
in Pageauet al @110#. This reference provides eigenvalu
equations, singular eigenvalues, and accompanying ei
functions. A further true trimaterial wedge with each co
stituent single-material wedge having a vertex angle of 9
and with outside stress-free faces (Is2As2As2Is) is ana-
lyzed in Keer and Freeman@111#. This reference provides th
eigenvalue equation.

In closing, we comment on the other interface conditio
in Table 11. We observe that Conditions Bs and Ds act like
the boundary conditions Is and IIs of Table 9. Consequently
bimaterials with these interface conditions simply have
same singular character as two single-material wedges.
Conditions Es , some reduction in singular stresses over t
for As is to be expected. This is indicated via limiting cas
with single-material wedges. However, this is yet to be f
mally established in general.

4.3 Out-of-plane bending: Classical theory

Here we consider the singularities that can occur in the o
of-plane bending of an elastic plate when treated within cl
sical fourth-order theory. We follow the same order of pr
sentation as previously. Thus we first treat plates made
single material under homogeneous boundary conditio
then inhomogeneous conditions, then plates made of m
tiple materials under these two types of conditions in turn

es:
Hour @106#, which also furnishes associated eigenfunctio
for all three types of configuration Is2As2Is , IIs2As
2II s , and Is2As2II s .

Singular eigenvalues for the crack terminating at an in
face with Is2As2As2Is are given in Fenner@80# for a wide
range ofm̄ and all angles of incidence.

Singular eigenvalues for As2As are given in Sinclair
@99#. Some further eigenvalues for As2As are provided in
Pageau et al@73#, together with the associated eigenfunctio

In view of the discussion of completeness, it would se
to be unlikely for there to be anything other than real pow
singularities for out-of-plane shear of a bimaterial wedge
der homogeneous boundary conditions. That this is the c
is confirmed in Sinclair@99#. Further, there is no logarithmi
participation under homogeneous boundary conditions Is and
II s ~ibid!.

Again, this absence of other singularities need not be
case forinhomogeneous boundary conditions. For the uni-
form traction/linear displacement conditions of Table 9, log
rithmic stress singularities are possible. Following basica
the same steps as in Section 4.1, Sinclair@107# identifies
instances of such log singularities. These we present in T
12.

In Table 12 it is understood thatf1 andf2 are required to
be such that positive shear moduli are involved with

0,m̄,` (4.11)

Further in Table 12,q1 is q andDf1 is Dfs onR1 , while q2

is q andDf2 is Dfs on R2 . As previously, Conditions IIIs

Fig. 11 Examples of wedges with logarithmic stress singularit
a! half-space with discontinuous shear traction,b! bimaterial wedge
with continuous shear traction
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Fig. 12 Geometry and coordinates for the angular elastic plat
bending
i
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-

in

Table 13. Boundary conditions for out-of-plane bending with classical
theory

Identifying
Roman numeral

Boundary
conditions

Physical
description

Ib Mu50, Qu2
]Mru

]r
50 Stress free

IIb uz50,
]uz

]u
50 Clamped

III b
]uz

]u
50, Qu50 Symmetry

IVb uz50, M u50 Simply supported

Vb Mu5kt

]2

]r2 S1r ]uz

]u D,
Qu2

]Mru

]r
5kb

]4uz

]r4

Elastically restrained

Ib8 M u5M 01M 08r ,

Qu2
]Mru

]r
5V0

Applied moment/shear

IIb8 uz5u0r
3,

]uz

]u
5u08r

3 Applied displacement/
rotation

IVb8 M u5M̂ 01M̂ 08r , uz5û0r 3 Applied moment/
displacement
t

The angular elastic plate to be bent can be framed w
cylindrical polar coordinatesr , u, andz with origin O at the
vertex of the mid-plane of the plate~Fig. 12!. It has indefinite
extent in ther direction, thickness 2h in thez direction, and
subtends an anglef at its vertex. The displacement of pr
mary concern is that in thez directionuz . This displacement
has associated moment resultantsMr , M u , andMru shown
acting in a positive sense in Fig. 13a, and shear resultantsQr

andQu shown likewise in Fig. 13b. All of these field quan-
tities are taken to be independent ofz. Consequently, field
equations hold on the 2D regionR of ~2.1! and ~3.1! for
single-material and multiple-material plates, respective
With these preliminaries in place, we can formulate the o
of-plane bending problems of initial interest as next.

In general, we seek the out-of-plane displacementuz , and
its associated resultantsMr , M u , Mru , Qr , and Qu , as
functions of r and u throughoutR of ~2.1!, satisfying: the
equations of equilibriumin the absence of body forces an
loading on the plate faces atz56h,

]

]r
~rQr !1

]Qu

]u
50

]Mr

]r
2

1

r

]Mru

]u
1

Mr2M u

r
2Qr50 (4.12)

1

r

]M u

]u
2

]Mru

]r
2

2Mru

r
2Qu50
of
e

in

te-
ies
ly.
ut-

d

on R; the resultant-displacement relationsfor a linear elastic
plate which is both homogeneous and isotropic,

H Mr

M u
J 52mbF H n

1J ¹2uzH 1

2J ~12v !
]2uz

]r 2 G
Mru5mb~12v !

]

]r S 1

r

]uz

]u D (4.13)

H Qr

Qu
J 52mbH ]

]r

1

r

]

]u

J ~¹2uz!

on R, wherein mb54mh3/3(12n) is the flexural rigidity
and ¹2 the Laplacian operator inr and u coordinates; any
one of the first five sets of admissibleboundary conditionsin
Table 13~identified as Ib– Vb therein! on the plate edge a
u50, together with another such set on the edge atu5f or
the bisector atu5f/2 as appropriate, for 0,r ,`; and the
regularity requirementat the plate vertex,

uz5O~r ! as r→0 (4.14)

on R. In particular, we are interested in the local behavior
the fields complying with the foregoing in the vicinity of th
plate vertex,O.

Several comments on the preceding formulation are
order. When the plate haslateral loadingon aface, the right-
hand side of the first of~4.12! is no longer zero. Provided
this lateral loading is continuous or, if singular, has in
grable singularities, it in itself does not produce singularit
in any of the resultants.

The resultants are related to thestressesin the plate by
Fig. 13 Stress resultants on plate elements:a! positive moment
resultants~element viewed fromz5h face!, b! positive shear result-
ants
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biharmonic. Hence we can simply use the biharmonic A
stress function used to generate~1.1! ~from Williams @2#! as
the displacement in bending~as in Williams@115#!. Thus we
obtain, as ourbasic displacement solution for classical ben
ing theory,

uz5r l11L~l, u!
(4.16)

L~l, u!5c1 cos~l11!u1c2 sin~l11!u

1c3 cos~l21!u1c4 sin~l21!u

where ci( i 5124) continue as constants. Stress resulta
follow from ~4.13!. Now we can apply the homogeneou
boundary conditions of Table 13. These boundary conditi
then turn out to have mathematically analogous condition
Table 1 for in-plane extension. This enables us here simpl
use the eigenvalue equations for in-plane extension give
Section 2.1 for out-of-plane bending with classical theory

To explain themathematical analogyfurther, the simplest
bending boundary conditions to consider are for a clam
or built-in edge. Applying Conditions IIb of Table 13 onu
5f to uz of ~4.16! implies

L50,
]L

]u
50, at u5f (4.17)

These requirements onL are the same as would result fro
a stress-free edge for a plate in extension~see~1.1! on re-
placing (l11)c3 and (l11)c4 therein withc3 andc4). It
follows that clamped conditions under bending are ma
ematically analogous to stress-free conditions in extensio
far as eigenvalue equations are concerned.

Similarly, other mathematical analogies can be develop
For example, a free edge under bending is analogous
clamped edge with extension. This last analogy only ho
however, whenk in extension conditions is replaced bykb

5(31n)/(12n). All told, the following mathematical
analogies hold between the bending boundary condition
Table 13 and the extensional boundary conditions of Tabl

Ib→II ~l21! with k→kb , IIb or Vb→I
(4.18)

III b→III, IV b→IV

Without the (l21) factor, the first of~4.18! is developed in
a general context in Southwell@116#, which also observes
that the second for IIb was well known circa 1950. The facto
(l21) is not significant when considering power singula
ties, but could play a role in identifying log singularitie
whenl51. The analogy for IIIb follows directly from com-
paring conditions as done for~4.17!, while the analogy for
IVb is noted in Rao@48#. The equivalence of Vb and IIb
follows from an adaptation of the argument in Sinclair@99#
for boundary conditions which have terms with a differe
r -dependence within a single condition. While the equiv
lence of elastically restrained conditions with built in hol
for anyl, similar arguments show elastically restrained co
ditions to be equivalent to stress-free conditions for the s
cial case ofl51, and to symmetry conditions for the speci

ular
Mru
2h 2t ru

u 2h uz

(4.15)

These relations are consistent with the sign conventi
shown in Fig. 13. Assumings r , su , andt ru to be linear in
z, it is possible to invert the first of~4.15!. Likewise, assum-
ing t rz andtuz to be parabolic inz and zero atz56h, it is
possible to invert the second of~4.15!. It follows that any
singularity in the moment resultantsMr , M u , andMru gives
rise to the same singularity in the stressess r , su , andt ru ,
respectively, while any singularity in the shear resultantsQr

andQu gives rise to the same singularity in the shear stres
t rz andtuz , respectively.

Turning to the boundary conditions of Table 13, the h
torical introduction in Love@112# credits Kirchhoff@113# as
being first to advance Conditions Ib for a free edge. While it
would be physically natural to insist that all three resulta
be zero on a free edge, the fourth-order classical theory
only admit two conditions per edge. Conditions Ib are the
two that arise out of a variational development of the theo
Conditions IIb are the counterparts of built-in end conditio
in beam theory. Conditions Ib and IIb , respectively, are
physically closest to Conditions I and II of Table 1 for in
plane loading.

As previously, when the same conditions apply on b
plate edges it is advantageous to distinguish between s
metric and antisymmetric response. Symmetric respo
about the plate bisector implies thatuz is an even function of
u aboutu5f/2. Conditions IIIb ensure that this is so. Con
ditions IVb physically correspond to a simply supported
hinged edge: If applied on the plate bisector, however, t
take on the role of antisymmetry conditions by ensuringuz is
an odd function ofu aboutu5f/2.

Conditions Vb are for a plate attached to an elastic bar
torsion and bending. Hencekt is the bar’s torsional stiffness
kb its bending stiffness. With the present resultants,kt is
positive on a positiveu edge and vice versa, whilekb is
negative on a positiveu edge and vice versa. These cond
tions are physically closest to Conditions VI of Table 1 f
in-plane loading.23

As earlier, there are noconditions at infinityor in-plane
length scalepresent in the formulation. For the reasons a
vanced in Section 2.1, this is appropriate in an asympt
treatment. Further, regarding theregularity requirement
~4.14!, we remark that this can be included provided t
resulting formulation can be shown to be complete. Giv
the analogy between the extensional case and bending se
subsequently in this section, completeness would se
likely, although it is not formally established. Given com
pleteness, the singular fields admitted by~4.14! have
bounded displacements.

Analysis proceeds on using the second and third of~4.12!
to eliminateQr and Qu from the first, then substituting fo
the moment resultants from~4.13!. This establishes thatuz is

23A development of the conditions for an elastically restrained plate in rectang
coordinates may be found in Art 22, Timoshenko and Woinowsky-Krieger@114#.
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case ofl52. This last can lead to log singularities wit
elastically restrained conditions, something we investig
subsequently.

From ~4.18!, then, we have the following eigenvalu
equations for generall, and free (Ib), built-in (IIb), simply
supported (IVb), and elastically restrained (Vb) conditions,
directly from Tables 2–4 of Section 2.1:
Ib2Ib ~2.10! (l21) with k→kb

for symmetric response
~2.14! (l21) with k→kb
for antisymmetric response

IIb or Vb– IIb or
Vb

~2.9! for symmetric response

~2.13! for antisymmetric response
Ib– IIb or Vb ~2.17! (l21) with k→kb
Ib– IVb ~2.14! (l21) with k→kb , f→2f
IIb or Vb– IVb ~2.13! with f→2f

(4.19)

For simply supported conditions on both plate edges,
corresponding eigenvalue is merely indicated at the end
Section 2.1. This is because the corresponding extensi
configuration is not that physically significant and cons
quently has received little attention. Here, with bending, i
physically important, so we give its symmetric and antisy
metric equations explicitly:

IVb– IVb coslf1cosf50 for symmetric response

(4.20)
coslf2cosf50 for antisymmetric.

The equations in~4.20! are consistent with~4.18! and the
combined eigenvalue equation indicated at the end of S
tion 2.1.

For the most part, the eigenvalue equations of~4.19! and
~4.20! are basically available in the literature. Dixon@117#
gives an equation for IIb– IIb and a 90° corner. Carrier an
Shaw @118# gives an equation for Ib– Ib and antisymmetric
response. These equations are confirmed in Williams@115#,
which also gives equations for all combinations of Ib , IIb ,
and IVb . When conditions are nonmixed, symmetric and a
tisymmetric equations are not distinguished in William
@115# but are both included in a single equation. Combined
this way, corresponding equations in~4.19! and ~4.20! are
either exactly the same as, or equivalent to, the equation
Williams @115#.24

From ~4.13! and ~4.16!,

M5O~r l21!, Q5O~~c3
21c4

2!r l22!, as r→0 (4.21)

on R, where M is any moment resultant,Q either shear
resultant. Thus provideduz is not purely harmonic~ie, pro-
vided c3Þ0 or c4Þ0), the general range of eigenvalues f
power singularitiesis

0<l,2 (4.22)

Singular eigenvalues in this range comply with the regula
requirement~4.14!.

Singular eigenvalueswithin the range~4.22! are deter-
mined in the literature as follows. For all possible combin
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tions of the boundary conditions Ib , IIb , and IVb and vertex
angles not exceeding 180°, Williams@115# furnishes the real
parts of dominant singular eigenvalues. Typically these
determined numerically.

For IVb– IVb , singular eigenvalues can be determin
analytically from~4.20!. Thus for symmetric configurations

l5~2n21!
p

f
21 ~~2n21!,f,np,n51,2!

l516
p

f
~p,f<2p! (4.23)

while for antisymmetric,

l5
2p

f
21 ~p,f<2p! (4.24)

For the minus sign in the second of~4.23!, the range off can
be extended to includep. Some of the limits on the range
for f in ~4.23! and~4.24! are because the shear resultants
identically zero for these eigenvalues and thus there are
singularities when 1,l,2.25 The dominant singularity for
f<p comes from the first of~4.23! with n51. This eigen-
value is plotted in Williams@115#.

For IIb– IIb and any vertex angle, the real parts of singu
eigenvalues for both symmetric and antisymmetric respo
are given in Morley@119#. Forf5270° with Ib– Ib , IIb– IIb ,
and IVb– IVb , singular eigenvalues are given in Hrudey a
Hrabok @120#, including real and imaginary parts when e
genvalues are complex. For all possible combinations
boundary conditions Ib , IIb , and IVb and vertex angles be
tween 180° and 360°, Leissa, McGee, and Huang@121# fur-
nishes the real parts of dominant singular eigenvalues.
Ib– Ib whenn50, 1/3, 1/2, IIb– IIb , and Ib– IIb whenn50,
singular eigenvalues may be obtained from Seweryn
Molski @20#, on using the analogies in~4.19!. In Seweryn
and Molski@20#, symmetric and antisymmetric responses a
distinguished and provided separately, both real and im
nary parts of complex eigenvalues are furnished, and sin
lar eigenvalues other than just the dominant ones are gi
For Ib– IIb and f590°, complex singular eigenvalues a
tabulated in Gregory, Chonghua, and Wan@122# for n
50,1/4,1/3,1/2.

The singular eigenfunctionsfor a cracked plate unde
bending within fourth-order classical theory are derived
Williams @123#. Under symmetric loading one might expe
the tension side of the plate to have the same stress dist
tion as for a Mode 1 crack in extension~developed in Will-
iams @124# and Irwin @125#!. While both have inverse-
square-root stress singularities and tensile normal stre
acting transverse to the crack and directly ahead of the c
tip, classical bending theory predicts a compressive nor
stress acting parallel to the crack and ahead of it. This is
marked contrast to the extensional case which has the no
stress parallel to the crack being tensile and equal in ma
tude to the transverse component. Given the key role pla
by boundary conditions in influencing the character of str
f

24None of the (l21) factors in~4.19! are present in equations in the literature. Po
sibly this is because the basic fields attending~4.16! are nonsingular forl51. Auxil-
iary fields are singular however.
s-
25The Kirchhoff shear,Qu2]Mru /]r , would however be singular for wider ranges o
f with 1,l,2.
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singularities, the arguably less physical result of class
bending theory may be because the crack flanks are not
stress free with fourth-order theory.

Turning to stress singularities involving logarithmi
terms, at the outset these stem from auxiliary bending fie
generated by differentiating~4.16! with respect tol. The
ensuring development is outlined in Sinclair@126#. As for the
extensional case,logarithmic intensificationof power singu-
larities can be expected to occur when eigenvalues trans
from complex to real. Such instances have yet to be fu
checked out in the literature. Rather than logarithmic int
sification, here we concentrate onpure logarithmicsingulari-
ties.

There are two eigenvalues which result in what might
termed pure logarithmic singularities. First forl51, pure
log singularities are possible in moment resultants. Typica
these are accompanied by 1/r singularities in shear result
ants. That is, we have

M5O~ ln r !, Q5O~~ ĉ3
21 ĉ4

2!/r !, as r→0 (4.25)

on R whenl51, whereĉ3 andĉ4 are constants in auxiliary
fields corresponding toc3 andc4 in the basic fields attending
~4.16!. Even whenĉ35 ĉ450 and the shear resultants va
ish, the Kirchhoff shear has a 1/r singularity. Thus these
singularities are associated with some form of concentra
shear loading.

Second forl52, pure log singularities are possible
shear resultants. That is, we have

M5o~1!, Q5O~~ ĉ3
21 ĉ4

2!ln r !, as r→0 (4.26)

on R when l52. These are the weakest singularities p
sible and consequently the least readily detected with
merical methods. Accordingly their asymptotic identificati
can be of significant value.

Conditions for singularities as in~4.25! with homoge-
neous boundary conditions are as in the next to last of~1.3!
with nA54. Conditions with inhomogeneous boundary co
ditions are as in the last two of~1.5! with nA54. Examples
of corresponding boundary conditions are those associ
with the constantsM0 and M̂0 in Ib8 and IVb8 of Table 13,
respectively, with the other constants in these conditions
ing set to zero.

Conditions for singularities as in~4.26! with homoge-
neous boundary conditions are as in the next to last of~1.3!
with nA54 except that nowl52. Conditions with inhomo-
geneous boundary conditions are as in the last of~1.5! with
nA54, but now with l52 instead of 1. Correspondin
boundary conditions are those associated with the cons
M08 , V0 , u0 , u08 , M̂08 , andû0 in Ib8 , IIb8 , and IVb8 , with M0

andM̂0 being set to zero~see Sinclair@126#!.
As a first example of a singularity as in~4.25!, we have

the out-of-plane line load on the edge of a half-plane pla
This has

M5ord~ ln r !, Qr5ord~1/r !, Qu50, as r→0 (4.27)

on R(f5p). Full fields may be obtained from Article 49
Nadai @127#. A second example is the half-plane plate ag
but now under a step moment on its edge~Fig. 14a!. This has
cal
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fields as in~4.27! but with the roles ofQr andQu reversed.
A third example is the hinged quarter-plane plate under
plied moments~Fig. 14a8!. This has

M5ord~ ln r !, Qr5Qu50, as r→0 (4.28)

on R(f5p/2). The Kirchhoff shear, though, still behave
like 1/r as r→0.

The presence of 1/r terms make it unlikely that any of the
foregoing could pass undetected in a stress analysis. Th
not the case for singularities as in~4.26!. Accordingly, we list
all configurations known to have singularities of this form
Table 14~from Sinclair@126#!. For elastically restrained con
ditions, some of these stem from their equivalence with sy
metry conditions for the special case ofl52.

In Table 14,fb is such that

4kb sin2 fb5~kb11!~26A42kb! (4.29)

If in addition to ~4.29!, kb52tanfb /fb cos 2fb , by defini-
tion, thenk5k̂b fb5f̂b . Two examples of singularities a
in ~4.26! are shown in Figs. 14b and b8. The first is for a
half-plane plate with a step shear and thus quite analogou
the extensional case. The second is for a quarter-plane p
hinged on one edge with shear on the other. This examp
perhaps less obvious than the first, although it is rea
equivalent to it. Even less obvious in Table 14 is Ib8– Ib for
the half-plane whenM u5M08r : Here the moment resultan
actually varies continuously along the plate edge, though
derivative does not.

Turning to plates made of multiple materials under ben
ing, there are relatively few instances of singularity ident
cation compared to the extensional case. However, Fe
@80# shows that perfectly bonded conditions in bending w
fourth-order theory are effectively equivalent to perfec
bonded conditions in extension as far as eigenvalue eq

Fig. 14 Examples of configurations with logarithmic stress sing
larities:a!, a8! plates with applied moments and log singularities
s r , su , andt ru ; b!, b8) plates with applied shears and log sing
larities in t rz andtuz .
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Table 14. Configurations with logarithmic singularities in shear resultants

Boundary conditions
on uÄ0,f

Configuration specifications
„mÄ1,2…

Ib8– Ib f5p or 2p, M 08Þ0 or V0Þ0
kb56secf, and

M08~kb12!fStan
f

2D61

Þ6V0~22kb!

IIb8– IIb or Vb f5p or 2p, u0Þ0 or u08Þ0
IVb8– IVb8 f5p or 2p, M 08Þ6û0(12n)mb
Ib– IIb or Vb f5f̂b , kb5k̂b
Ib8– IIb8 f5fb , kbÞk̂b and

(M0826u0(12n)mb cos 3f)(3 sin 3f2(kb12)sinf)
Þ(V012u08(12n)mb cos 3f)(3 cos 3f1(kb22)cosf)

Ib8– IVb8
f5~2m21!

p

2
, and

24û0(12v)mbÞM̂ 08(kb15)2( – )mV0(kb11)
f5mp, M08Þ( – )mM̂ 08

Ib8– Vb8 f5p or 2p, V0Þ0
f5p/2 or 3p/2, M08Þ0
kb5sec 2f, M 08(kb12)tanfÞV0(22kb)

IIb8– IVb8
f5~2m21!

p

2
, and

2M̂08Þ(12v)mb(3(32kb)û02( – )m(kb11)u08)
f5mp, û0Þ( – )mu0

IIb8– Vb f5p/2 or 3p/2, u0Þ0
f5p or 2p, u08Þ0

IVb8– Vb f5p/2 or 3p/2, M̂ 08Þ6û0mb(12n)
e

n

a

n

n

te
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tions are concerned. Herein perfect bonding in bend
matchesuz , ]uz /]u, M u , and Qu2]Mru /]r . Then the
equivalence holds provided

k→kb , m1 /m2→m2 /m1 (4.30)

wherem1 andm2 are the shear moduli for material on eith
side of the interface. Thus using the analogies in~4.19!, ei-
genvalue equations for perfectly bonded interfaces can
obtained from extensional counterparts~Section 3!.

There are two instances of bimaterial plates under be
ing explicity treated in the literature. The first concerns
crack meeting an interface~Figs. 6b and b8). Fenner@80#
determines singular eigenvalues for any angle of incide
and a range of ratios. The singular eigenfunctions for
crack parallel to the interface may be obtained from Sih a
Rice @128#. The second concerns a bonded bimaterial pl
Huang@129# computes singular eigenvalues for a variety
geometries and a range of moduli ratios.

4.4 Out-of-plane bending: Higher-order theory

In this section we consider the singularities that can occu
the out-of-plane bending of an elastic plate when trea
within sixth-order theory. The particular theory considered
due to Reissner@130#. This is the sixth-order theory that ha
received most attention when it comes to singularity ide
fication. We do comment briefly, though, on a similar theo
in Hencky @131#.

The angular elastic plate to be bent continues to be a
Fig. 12. As for classical theory, the out-of-plane displac
ment of the plate isuz , its moment resultants areMr , M u ,
and Mru , and its shear resultants areQr and Qu ~positive
resultants shown Fig. 13!. In addition, the plate has rotation
v r and vu . All of these field quantities are taken to be i
ing
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dependent ofz so that field equations continue to apply onR
of ~2.1!. With these preliminaries in place, we can formula
the class of out-of-plane bending problems of interest
next.

In general, we seek the out-of-plane displacementuz , its
rotationsv r andvu , and its associated resultantsMr , M u ,
Mru Qr , and Qu as functions ofr and u throughoutR,
satisfying: theequations of equilibriumin the absence of
body forces and loading on the plate faces,~4.12! on R; the
resultant-displacement/rotation relationsfor a linear elastic
plate which is both homogeneous and isotropic,

H Mr

M u
J 52mbF H n

1J ¹2uzH 1

2J ~12n!
]2uz

]r 2 G H 1

2J 4h2

5

]Qr

]r

Mru5mb~12n!
]

]r S 1

r

]uz

]u D2
2h2

5 S 1

r

]Qr

]u
1r

]

]r S Qu

r D D
(4.31)

H Qr

Qu
J 5

5mb~12n!

4h2 H v r1
]uz

]r

vu1
1

r

]uz

]u

J
Table 15. Boundary conditions for out-of-plane bending with Reiss-
ner’s theory

Identifying
Roman numeral

Boundary
conditions

Physical
description

IB M u50, Qr50, Qu50 Stress free
IIB uz50, v r50, vu50 Clamped
III B vu50, Mru50, Qu50 Symmetry
IVB uz50, v r50, M u50 Simply supported
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on R, whereinmb remains as the flexural rigidity; any one o
the sets ofboundary conditionsIB , IIB , or IVB in Table 15
on the plate edge atu50, together with another such set o
the edge atu5f, or one of Conditions IIIB and IVB on the
plate bisector atu5f/2 as appropriate, for 0,r ,`; and the
regularity requirementat the plate vertex,

uz5o~1!, v r5O~1!, vu5O~1!, as r→0 (4.32)

on R. In particular, we are interested in the local behavior
the fields complying with the foregoing in the vicinity of th
plate vertexO.

Several comments on the preceding formulation are
order. First, as with classical theory, the presence of lat
loading has no effect on the nature of any singularities p
vided the loading is integrable. Second, the resultants c
tinue to be related to stresses as in~4.15! so that singularities
in resultants lead to singularities in corresponding str
components. Third, the boundary conditions now presc
three quantities per edge~cf, Table 13!: Accordingly, they
enable the physically natural conditions attending a stre
free edge to be enforced. Fourth, when the same boun
conditions apply on both plate edges, Conditions IIIB and
IVB enable one to distinguish between symmetric and a
symmetric response—in this role, Conditions IVB are
equivalent to antisymmetry conditions. Fifth, there are
conditions at infinity nor should there be in this asympto
formulation. Sixth and last, the regularity requirement is co
sistent with classical theory and therefore analogous to
lier such requirements: However, absent a formal proof
completeness for Reissner’s theory, it is provisional at t
time.

The theory in Hencky@131# has the same equations
equilibrium and boundary conditions as Reissner’s theo
Differences occur in the resultant-displacement/rotation r
tions. In the absence of loading on the plate faces, th
differences are confined to the numerical coefficients ofh2

terms in ~4.31!. Moreover, these differences are consist
throughout~4.31!. As a result, Reissner’s theory can be tran
formed into that of Hencky simply by making the transfo
mationh→A5/6h in ~4.31! whereverh occurs explicitly~ie,
there is no change tomb). It follows that we can expect the
singularities in Hencky’s theory to stem from the same
genvalue equations as for Reissner’s theory once this tr
formation is implemented.

Analysis proceeds on introducing a stress functionx so
that the first of~4.12! is satisfied. Thus

Qr5
1

r

]x

]u
, Qu52

]x

]r
(4.33)

on R. Substituting~4.31! and ~4.33! into the last of~4.12!
then gives

]

]r S x2
2h2

5
¹2x D5

mb

r

]

]u
~¹2uz!

(4.34)

1

r

]

]u S x2
2h2

5
¹2x D52mb

]

]r
~¹2uz!
f

n

of
e

in
ral

ro-
on-

ss
ibe

ss-
ary

nti-

no
tic
n-
ar-
of

his

f
ry.
la-
ese

nt
s-
r-

ei-
ns-

on R. In solving~4.34!, we need solutions with six constan
sharing a common power ofr in order to meet the six bound
ary conditions, three to an edge, which hold for allr . To this
end, Burton and Sinclair@132# use a series approach with

uz5r l11L~l,u!1O~r l13!
(4.35)

x5r l11L̂~l,u!1O~r l13!

on R. HenceL is as in ~4.16!, L̂ likewise with ci ( i 51
24) exchanged forĉi . Then relating the dominant term o
the left-hand side of~4.34! asr→0, the¹2x term, to that of
the right-hand side relatesĉ3 and ĉ4 to c3 and c4 . This
leaves six free constants as desired (c12c4 , ĉ1 , and ĉ2).
The resulting fields for the dominant terms asr→0 are given
in @132#.

What is overlooked in Burton and Sinclair@132# is the
possibility ofx terms on the left-hand side of~4.34! interact-
ing with the right whenx is purely harmonic. This omission
is corrected in Yen and Zhou@133#, the resulting additional
field being given in@133#.

Substituting the fields in Burton and Sinclair@132# into
the various combinations of boundary conditions availa
from Table 15 leads to associatedeigenvalue equations. With
the exception of the equation for IVB– IVB , these equations
are confirmed in Yen and Zhou@133#. This confirmation oc-
curs because the additional solution available in Yen a
Zhou @133# does not actively participate other than for
plate simply supported on both edges. These confirmed e
tions then are the same as extensional counterparts prov
k takes on its value for plane stress (k5(32n)/(11n)).
Accordingly, drawing on results from Tables 2–4 of Secti
2.1, we have:26

IB– IB ~2.9! for symmetric response
~2.13! for antisymmetric response

IIB– IIB ~2.10! for symmetric response
~2.14! for antisymmetric response

IB– IIB ~2.17!
IB– IVB ~2.13! with f→2f
IIB– IVB ~2.14! with f→2f

(4.36)

For IVB– IVB , the additional field of Yen and Zhou@133# is
active and the eigenvalue equation in Burton and Sinc
@132# has an additional factor. Accordingly we have:

IVB– IVB ~coslf6cosf!cos~l21!
f

2
50 (4.37)

The plus sign in~4.37! is associated with symmetric re
sponse, the minus sign with antisymmetric. The eigenva
equations in~4.36! and ~4.37! are independent ofh. Conse-
quently, the singular eigenvalues in Hencky’s theory are
sameas those in Reissner’s theory.

For ~4.35! from ~4.31! and ~4.33!,

M5O~r l21!,Q5O~r l!
(4.38)

v5O~r l!,uz5O~r l11!,as r→0

26There is a typographical error in the second eigenvalue equation in Table 1 of Bu
and Sinclair@132#. The correct result is given in~4.36!.
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on R, wherev is either rotation component. From~4.32!,
admissiblepower singularitiesin moment resultants then oc
cur for

0<Rel,1 (4.39)

For the additional solution of Yen and Zhou@133#,

M5O~r l23!, Q5O~r l22!
(4.40)

v5O~r l22!, uz5O~r l11!, as r→0

on R. Admissible power singularities in moment resultan
occur for

2<Rel,3 (4.41)

Observe that, with either~4.38! and ~4.39! or ~4.40! and
~4.41!, M is singular whileQ is not, in contrast to classica
theory whereQ is typically more singular thanM . Singular
eigenvaluesas in ~4.39! for ~4.38! can be obtained directly
from their extensional counterparts~see Section 2.2!.

For simple supported conditions, singular eigenvalues
in ~4.39! for ~4.38! from the first factor in~4.37! are included
in ~4.23! and ~4.24!. Singular eigenvalues as in~4.41! for
~4.40! from the second factor in~4.37! are:

l5
p

f
11 ~p/2,f<p!

(4.42)

l5
3p

f
11 ~3p/2,f<2p!

These eigenvalues are given in Yen and Zhou@133#.
There is a further singular field for simply supported co

ditions not included in@132,133#. This has

M5O~r p/f!, Q5O~r p/f21!
(4.43)

v5O~r p/f11!, uz5O~r p/f!, as r→0

on R. Thus forf.p, this field hasQ singular,M not, in
contrast to the results in@132,133#. This singularity is iden-
tified in Huang, McGee, and Leissa@134#.

Turning to companion eigenfunctions for Reissne
theory, for the fields associated with~4.39!, both the
r -dependence and the individual functions ofu in eigenfunc-
tions can be shown to be the same as extensional cou
parts~see Williams@2# and Burton and Sinclair@132#!. Thus
all that is needed for eigenfunctions to coincide complet
to within a multiplicative factor is that the weighting of th
individual functions ofu be the same in bending as in exte
sion.

That this in fact can occur is demonstrated for the cas
a crack in a plate of vanishing thickness in Knowles a
Wang@135#. For a plate of finite thickness, it is demonstrat
for a crack in Hartranft and Sih@136# and Wang@137#.
Hence the tensile side of the plate in bending behaves as
is a crack in a plate in extension, a physically reasona
result in contrast to that of classical theory.

On the compression side of the plate, the eigenfunc
for the crack in Reissner’s theory leads to interpenetration
overlapping of the crack’s flanks. While this is not physica
possible, it is nonetheless possible in an elastic anal
-
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within Reissner’s theory~it is also possible with classica
theory!. In some instances, overlapping displacements m
be negated by the addition of an in-plane tension of suffici
magnitude. Otherwise, more physically appropriate res
can only be obtained by entertaining contact of the flan
and tracking this contact as loading proceeds. Such an an
sis is really 3D, as well as being geometrically nonlinear:
such, it is outside the scope of this section.

For logarithmic terms underhomogeneousboundary con-
ditions, conditions like~1.3! are indicated in Burton and Sin
clair @132# for fields stemming from~4.35!. No actual in-
stances of these singularities are identified in Burton a
Sinclair @132#. Logarithmic terms can be generated f
simply-supported conditions and the additional fields of Y
and Zhou@133#, although it remains to be determined wh
additional conditions these logarithmic fields must meet
order to participate.

There is also the possibility of logarithmic singularitie
being induced byinhomogeneousboundary conditions. This
type of response can be expected to include configurat
that correspond to instances of log stress singularities un
inhomogeneous boundary conditions for plates in extens
~Section 2.4!. Some support of this expectation being fu
filled can be found in Hartranft@138#. There a log singularity
is identified inMr in response to a step inMru on a plate
edge (f5p), whereas no log singularity is found for a ste
in M u . Thus this situation is analogous to the in-plane ca
wherein a step in shear on a half-plane plate produces a
singularity ~Table 7, Section 2.4!, while a step in normal
stress does not. A further log singularity inQr in response to
a step inQu on a plate edge is identified in Hartranft@138#.
While this configuration has no counterpart in extension, i
analogous to the antiplane shear case wherein a step in s
on a half-space wedge produces a log singularity~Table 10,
Section 4.1!.

For plates made of multiple materials treated within R
issner’s theory, the only singularity identifications that wou
appear to be available in the literature are those in Hu
@129#. These are for closed bimaterial plates and simply s
ported bimaterial plates.

5 STRESS SINGULARITIES FOR OTHER ELAS-
TIC CONFIGURATIONS

5.1 Axisymmetric configurations

A representative axisymmetric configuration is sketched
Fig. 15. This depicts a right circular cylinder with a conic
cap bonded into a half-space which in general is compri
of a material with distinct elastic moduli from the cylinde
The end of the cylinder above the half-space is subjecte
an applied torqueT and an axial forceF. Stress singularities
can be expected at the vertex of the conePs , and at points
where the perimeter of the cylinder is bonded to the ha
space~eg, Ps8). For each location, we wish to consider th
singularities that may be induced by either the torqueT or
the forceF. Thus we have four configurations: the inner co
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Fig. 15 Singular axisymmetric configurations
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In general, we seek the axisymmetric shear stressestru

andtuc and their companion displacementuu , as functions
of r and c throughoutR, satisfying: thestress equation of
equilibrium absent body force,

r
]tru

]r
1

]tuc

]c
13tru12tuc cotc50 (5.3)

on R; the stress-displacement relationsfor a linear elastic
cone which is both homogeneous and isotropic,

tru5mS ]uu

]r
2

uu

r D , tuc5
m

r S ]uu

]c
2uu cotc D (5.4)

on R, whereinm continues as the shear modulus; thebound-
ary conditionfor either a clamped or a stress-free cone s
face,

uu50 or tuc50 at c5f/2 (5.5)

for 0,r,`; and theregularity requirementat the cone ver-
tex,

uu5O~1! as r→0 (5.6)

on R. In particular, we are interested in the local behavior
the fields complying with the foregoing in the vicinity of th
cone vertexO.

To solve the preceding problems, first substitute~5.4! into
~5.3!. Then seeking a separable solution foruu of the form
rl f (c) leads to Legendre’s associated differential equati
Hence, for boundeduu whenc50,

uu5clrlPl
1~cosc! (5.7)

Here cl is a constant coefficient, andPl
1 is an associated

Legendre function of the first kind of degreel and order
one.27 The eigenvalue equations attending~5.4!, ~5.5!, and
~5.7! are developed and solved numerically in Bazˇant and
Keer @140#. No roots are found in the range 0,l,1 irre-
spective of cone vertex anglef. Consequently,no power
singularitiesare found for the cone vertex under torsion.

For acone vertex under axial loading, the same spherica
polar coordinates are appropriate~Fig. 16!. Now there are
two displacements,ur anduc . However, both are still only
functions ofr andc, so that the region of interest remainsR
of ~5.2!. On this region we can formulate ourinner axial
problemsas next.

In general, we seek the axisymmetric stress compon
sr , sc , su , andtrc , and their companion displacemen
ur anduc , as functions ofr andc throughoutR, satisfying:
the stress equations of equilibriumabsent body forces,

r
]sr

]r
1

]trc

]c
12sr2sc2su1trc cotc50

(5.8)
]sc

]c
1r

]trc

]r
13trc1~sc2su!cotc50

on R; the stress-displacement relationsfor a linear elastic
cone which is both homogeneous and isotropic,

27The functionPl
1 is as defined in Ch 8, Abramowitz and Stegun@139#.
vertex with torsion or with axial loading, and the outer cy
inder boundary with torsion or with axial loading. We tre
each of these in turn in what follows.

For a cone vertex under torsion, spherical polar coordi-
natesr, c, andu enable the asymptotic problem to be read
formulated~Fig. 16!. These coordinates share a common o
gin O with the rectangular Cartesian coordinatesx, y, andz,
and are related to them by:

x5r sinc cosu, y5r sinc sinu, z5r cosc (5.1)

for 0<r,`, 0<c<p, and 0<u,2p. Under pure torsion,
the only displacement is that in theu direction,uu , which is
a function ofr andc alone. Hence the open region of inte
estR is

R5$~r, c !u0,r,`, 0,c,f/2% (5.2)

where f is now the vertex angle of the cone. With the
geometric preliminaries in place, we can formulate ourinner
torsion problemsas next.

Fig. 16 Spherical polar coordinates for a cone vertex
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sr52mF nQ

122n
1

]ur

]r G
sc52mF nQ

122n
1

1

r S ]uc

]c
1urD G

(5.9)

su52mF nQ

122n
1

1

r
~ur1uc cotc!G

trc5mF1

r

]ur

]c
1

]uc

]r
2

uc

r G
with

Q5
]ur

]r
1

2ur

r
1

1

r

]uc

]c
1

uc

r
cotc (5.10)

on R, whereinQ continues as the dilatation,n as Poisson’s
ratio; theboundary conditionsfor either a clamped or stress
free cone surface,

ur5uc50 at c5f/2 (5.11)

or

sc5trc50 at c5f/2 (5.12)

for 0,r,`; and theregularity requirementsat the cone
vertex,

ur5O~1!, uc5O~1!, as r→0 (5.13)

on R. In particular, we are interested in the local behavior
the fields complying with the foregoing in the vicinity of th
cone vertexO.

Thompson and Little@141# uses Papkovich-Neuber pote
tials to develop solutions for the preceding field equatio
and also derives the eigenvalue equation for~5.12!. Using
the same solutions, Bazˇant and Keer@140# derives the eigen-
value equation for~5.11!, and solves both eigenvalue equ
tions numerically. Power singularities are found for bo
clamped and stress-free conditions for reentrant cone ver
~ie, p,f<2p). The singularity exponents involved are a
real and depend on the value of Poisson’s ratio. Singula
exponents are given forn ranging from 0–0.499 in incre
ments of 0.1 in Bazˇant and Keer@140#. Exponents forn
50.3 are confirmed in Beagles and Sa¨ndig @142#.

Further singularities for a cone vertex under axial load
occur when the cone isrigid andindentsan elastic half-space
~cf, Fig. 15 nearPs). Herein the boundary conditions in th
contact region are

uc5u02r cotf/2, trc5 f sc , at c5p/2 (5.14)

whereu0 is the penetration of the cone vertex andf contin-
ues as the coefficient of friction. The frictionless case of t
configuration is analyzed in Love@143# and leads to a loga
rithmic stress singularity at the cone vertex. The friction ca
also has a log singularity~Hanson@144#!.

Bimaterialcone vertices~as atPs in Fig. 15! are analyzed
in Keer and Parihar@145#. Perfect bonding on the interface
assumed~ie, sc , trc , ur , anduc are matched atc5f/2).
Power singularities are identified for varying elastic mod
and cone vertex angles. In contrast to the single mate
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cone, some of the singularity exponents involved are co
plex. However, the magnitude of the singularity exponent,
of its real part if complex, is bounded from above by that f
clamped conditions in Bazˇant and Keer@140#.

By way of an example of acylindrical boundary under
torsion, we reconsider the configuration in Fig. 15, but no
with the cylinder and half-space comprised of a single ela
material. For this and like configurations, cylindrical pol
coordinates,r , u, andz enable ready formulation~Fig. 17!.
These coordinates share a common originO with the rectan-
gular Cartesian coordinatesx, y, and z and are related to
them by

x5r cosu, y5r sinu, z5z (5.15)

for 0<r ,`, 0<u,2p, and 2`,z,`. Under pure tor-
sion, the only displacement is that in theu direction, uu ,
which is a function ofr andz alone. Hence the open regio
of interestR becomes

R5$~r , z!u0<r ,R,0<z,` or 0<r ,`,2`,z,0%
(5.16)

whereR is the radius of the cylinder. On this region we ca
formulate our sampleouter torsion problemas next.

In general, we seek the axisymmetric shear stressest ru

andtuz , and their companion displacementuu , as functions
of r and z throughoutR, satisfying: thestress equation of
equilibrium absent body force,

]t ru

]r
1

2t ru

r
1

]tuz

]z
50 (5.17)

on R; the stress-displacement relationsfor a linear elastic
cylinder and half-space which are also homogeneous
isotropic,

t ru5mS ]uu

]r
2

uu

r D , tuz5m
]uu

]z
(5.18)

on R; the stress-freeboundary conditions,

Fig. 17 Cylindrical polar coordinates for a cylindrical boundar
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Fig. 18 Section through the cylinder and the half-space with lo
coordinates at the reentrant corner
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]

]r
52sinû

]

] r̂
2

cosû

r̂

]

]û
(5.23)

]

]z
5cosû

]

] r̂
2

sinû

r̂

]

]û

Then ~5.18!, ~5.22!, and~5.23! give

t r̂ ẑ5m
]uẑ

] r̂
1O~R21! as R→`

(5.24)

tu ẑ5
m

r̂

]uẑ

]u
1O~R21! as R→`

In ~5.24!, the limit R→` corresponds to approaching th
corner atÔ. Thus under this limit we have the same stre
displacement relations as for antiplane shear~cf, ~4.2! of
Section 4.1!.

Turning to the stress equation of equilibrium, we inve
~5.22! to obtaint ru and tuz in terms oft r̂ ẑ and tû ẑ , then
substitute into~5.17!. This gives, using~5.23!,

]t r̂ ẑ

] r̂
1

t r̂ ẑ

r̂
1

1

r̂

]tû ẑ

]û
1O~R21!50 as R→` (5.25)

Again, we have the same equation as for antiplane shear~cf,
~4.1! of Section 4.1!. Further, the boundary conditions fo
our sample problem simply are

tû ẑ50 at û50, 3p/2 (5.26)

for 0, r̂ ,`. Thus we have in~5.24!–~5.26! an antiplane
shear problem belonging to the class formulated in Sec
4.1. Consequently, from~4.7!,

t5O~ r̂ 21/3! as r̂→0 (5.27)

wheret is either shear stress.
There is nothing special about our sample problem. A

other feature on the cylindrical boundary can have its bou
ary conditions transformed so that locally they match tho
of Table 9, Section 4.1. Further, when multiple materials
involved, interface conditions can be matched with those
Table 11, Section 4.2. It follows that all of the singularitie
identified in Sections 4.1 and 4.2, including log singularitie
apply to corresponding outer torsion problems.

Demonstrations of this correspondence are available
the literature. Early examples are the penny-shaped c
under torsion in Section 5.4, Neuber@17#, and torsion of a
rigid disk on a half-space in Reissner and Sagoci@146#. Both
have inverse-square-root singularities as would be predi
from ~4.7! with f52p and from~4.8! with f5p, respec-
tively. For a general V-notch in a pipe under torsion, Tsuji
al @147# obtains singularities as in~4.7!. This paper also

cal
t ru50 at r 5R ~0,z,`!
(5.19)

tuz50 at z50 ~R,r ,`!

and theregularity requirementat the reentrant corner,

uu5O~1! as A~R2r !21z2→0 (5.20)

on R. In particular, we are interested in the local behavior
the fields complying with the foregoing in the vicinity of th
reentrant corner atr 5R andz50.

One expects that in the local vicinity of greatest interes
state ofout-of-planeor antiplane sheardominates response
If this is so, we can simply draw on the singularities iden
fied for antiplane shear~Sections 4.1 and 4.2! to identify the
singularities possible in outer torsion problems.

To show that antiplane shear indeed characterizes
sponse for the case of our sample problem, as well as for
other outer torsion problem, we proceed as follows. With
loss of generality we consider a section through the confi
ration of Fig. 17 on they axis for y>0. For this section we
introduce local cylindrical polar coordinatesr̂ , û, andẑ with
origin Ô at the reentrant corner~Fig. 18!. These are related to
rectangular Cartesian coordinatesx̂, ŷ, and ẑ sharing the
same originÔ as in ~5.15! with carets: Consistent with a
right-handed system,ẑ is positive out of the plane of Fig. 18
Then the original coordinate system is related to the n
local system in the plane of Fig. 18 by:

r 5R2 r̂ sinû, z5 r̂ cosû (5.21)

For the shear stresses of the local coordinate system,t r̂ ẑ and
tû ẑ , equilibrium of a pair of appropriately oriented triangle
leads to

t r̂ ẑ5t ru sinû2tuz cosû
(5.22)

tû ẑ5t ru cosû1tuz sinû

Now we wish to substitute~5.18! into ~5.22! to determine the
stress-displacement relations in the local coordinate sys
In order for the results to be in terms of the local quantiti
we make the exchangeuu52uẑ and invoke the chain rule to
obtain
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treats a bimaterial corner and finds the same stress singu
ties as for antiplane shear. Other examples of outer tor
problems with bimaterials leading to the same singulari
as for antiplane shear may be found in Freeman and K
@148#, Westmann@149#, and Keer and Freeman@150#. A tri-
material example is given in Keer and Freeman@111#. Still
further examples exist in the literature: The preceding is
an extensive list but merely intended to reflect the variety
configurations displaying the correspondence.

By way of example of acylindrical boundary under axial
loading, we continue to use our sample geometry of a sin
material version of Fig. 15, but now under an axial lo
instead of a torque. The cylindrical polar coordinates,r , u,
and z of ~5.15!, Fig. 17, then continue to be appropriat
Now, though, we have the two displacements,ur and uz .
However, spatial dependence continues to be just onr andz
so thatR of ~5.16! continues to be the region of interest. O
this region we can formulate our sampleouter axial problem
as next.

In general, we seek the axisymmetric stress compon
s r , su , sz , andt rz , and their companion displacementsur

anduz , as functions ofr andz throughoutR, satisfying: the
stress equations of equilibriumabsent body forces,

]s r

]r
1

]t rz

]z
1

s r2su

r
50

(5.28)
]sz

]z
1

]t rz

]r
1

t rz

r
50

on R; the stress-displacement relationsfor a linear elastic
cylinder and half-space which are also homogeneous
isotropic,

s r52mS nQ

122n
1

]ur

]r D , su52mS nQ

122n
1

ur

r D
(5.29)

sz52mS nQ

122n
1

]uz

]z D , t rz5mS ]ur

]z
1

]uz

]r D
with dilatation

Q5
]ur

]r
1

ur

r
1

]uz

]z
(5.30)

on R; the stress-freeboundary conditions,

s r5t rz50 at r 5R ~0,z,`!
(5.31)

sz5t rz50 at z50 ~R,r ,`!

and theregularity requirementsat the reentrant corner

ur5O~1!, uz5O~1!, as A~R2r !21z2→0 (5.32)

on R. In particular, we are interested in the local behavior
the fields complying with the foregoing in the vicinity of th
reentrant corner atr 5R andz50.

One expects that, in the local vicinity of greatest intere
a state ofplane straindominates response. This is becau
for a section such as that on they axis, plane strain has]/]u
being a null operator, in common with axisymmetry~u as in
Fig. 17!. If, in fact, such a correspondence holds, we c
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simply draw on the singularities identified in Sections 2 a
3 to identify the singularities possible in outer axial pro
lems.

That indeed this correspondence occurs is argued in B
ton @151# and Zak @152#. The approach is similar to tha
presented here for the simpler torsion problem—simpler
cause fewer field quantities are involved. While Zak@152#
explicitly treats stress-free and clamped boundary conditio
the correspondence is equally applicable to the other bou
ary conditions in Tables 1 and 6 of Section 2, and to
interface conditions in Table 8 of Section 3. The end resul
that not just our sample problem but all outer axial proble
have corresponding plane strain configurations which ch
acterize their stress singularities. Conversely, it follows t
all of the singularities identified in Sections 2 and 3, inclu
ing those involving logarithmic terms, apply to correspon
ing outer axial problems.

Demonstrations of this correspondence are available
the literature. Early examples are the penny-shaped c
under transverse tension in Sneddon@153#, and the rigid,
right circular cylinder, with a flat lubricated end, pressed in
a half-space in Harding and Sneddon@154#. Both have
inverse-square-root singularities as is predicted by co
sponding plane strain configurations. A further example o
clamped-free right-angled corner is given in Benthem a
Minderhoud@155#, and shares the same singularity as that
~2.17! in Section 2.1. An example for a bonded bimater
cylinder is given in Agarwal@156#, and leads to essentiall
the same eigenvalue equation for singularities as given
Bogy @85# for the corresponding plane strain configuratio
Again, the references listed here are merely intended to
flect some of the variety of configurations displaying t
correspondence.

5.2 Three-dimensional geometries with continuous ver-
tex paths

In this section, we continue to be interested in angular
gions, but now these regions are 3D rather than 2D.
distinguish three classes of such geometries. These cla

Fig. 19 Bimaterial elastic wedge with vertex locus a smooth cu
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Fig. 20 Constant pressure on a surface sector of an elastic
space
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iii ! Geometries wherein the vertex involved traces ou
discontinuous path. An example is the crack interse
ing a free surface in Fig. 21: Here the vertex has
angle of 2p and its path ceases abruptly atO.

We review singularities identified for each of these classe
turn. We begin with the first two in this section, then revie
the third in a separate following section because of the
tensive number of contributions for this class.

In undertaking these reviews, we do admit some con
butions entailing a significant amount of numerical analys
Previously, in two dimensions, analysis was almost entir
analytical: Numerical analysis was essentially confined to
calculation of eigenvalues from equations derived, a num
cal process that need have no errors effectively, as may
verified by back substitution. Here we entertain numeri
methods that do entail numerical approximations. We do
because of the greater intractability of 3D geometries
purely analytical approaches. We still focus, though, on lo
singularity identification rather than on global analysis
singular problems.

For thefirst class of3D geometries, the key general resul
is established in Aksentian@90#. For the geometry of Fig. 19
Aksentian@90# proves the asymptotic equivalence of 3D r
sponse at the vertex to the combination of plane strain
sponse~in the yz plane in Fig. 19! and out-of-plane shea
response~in the x direction in Fig. 19!.28 Thus, when the
vertex in a 3D configuration has a path with a continuou
turning tangent, all the plane strain singularities identified
Sections 2 and 3 can participate, together with all the a
plane shear singularities identified in Sections 4.1 and
Although eigenvalue equations are only explicitly deriv
for stress-free and clamped boundary conditions and
fectly bonded interface conditions in Aksentian@90#, the ap-
plicability of the equivalence for other boundary and inte
face conditions follows immediately from the asympto
governing equations,~1.5!–~1.7!, @90#, provided footnote 17
of Section 3.2 is observed.

An example of this equivalence between 2D and 3D s
gularities occurs for the 3D problem of a flat elliptical cra
under transverse tension. This shares the same inve
square-root singularity of a crack in plane strain~Sadowsky
and Sternberg@158# and Green and Sneddon@159#!. When
this elliptical crack is loaded in shear as well, the invers
square-root singularity of a crack in antiplane shear also p
ticipates~Kassir and Sih@160#!. Another example is the con
tact of an elastic half-space by a flat, frictionless, rigid pun
of elliptical cross section. Again, the inverse-square-root s
gularity of plane strain is present~Galin @161# and Green and
Sneddon@159#!. When a torsional shear is applied in add
tion, the inverse-square-root singularity of antiplane shea
added~Mindlin @162#!.

alf-
an
are arranged in order of decreasing continuity. As one m
expect, consequently they are in order of decreasing tra
bility.

The three classes of 3D geometries are as follows:

i! Geometries wherein the vertex involved traces ou
path with a continuously turning tangent. An examp
is the bimaterial wedge in Fig. 19: Here the vertex h
an angle off11f2 and its path follows a smooth
curve.

ii ! Geometries wherein the vertex involved traces ou
path that is continuous but has a discontinuity in
direction. An example is the half-space with a load
surface sector in Fig. 20: Here the ‘‘vertex’’ has a
angle ofp and its path turns abruptly through 2p2f̂
at O.

Fig. 21 Elastic half-space with a crack terminating at its surfa
28For the case of a single material (f250) and a crack (f152p), the same result is
given in Hartranft and Sih@157#. There, however, the result is assumed rather th
proven.ce
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As an initial instance of thesecond class of3D geom-
etries, we consider an elastic half-space loaded with a pr
surep on a surface sector which subtends an anglef̂ ~Fig.
20!. Hence in this problem, in general, stresses and displ
ments are sought throughout the half-space satisfying:
3D field equations of elasticity,29 and theboundary condi-
tions, on z50,

sz5H 2p for 2f̂/2,u,f̂/2
0 for other u,

(5.33)

tyz5tzx50 for 2p,u<p

all for 0,r ,` ~see Fig. 20 for coordinates!.
In particular, in the surface atz50, the stress componen

in rectangular coordinates are given by

H sx

sy
J 5 H 2

1J p~122n!

2p
sinf̂ ln r as r→0 (5.34)

with txy50, wheren is Poisson’s ratio of the half-space. F
f̂5p/2, this state of pure shear with a log singularity
consistent with results derived in Love@164#. For generalf̂,
the log singularity of~5.34! is identified in Turteltaub and
Wheeler@165#.

Notice that whenf̂52p, no singularity occurs in~5.34!.
This is as it should be when the half-space surface is loa
throughout with a constant pressure. Further, whenf̂5p, no
singularity occurs. This is consistent with the 2D problem
a step normal pressure on a half-space in plane strain w
has no singularity~Michell @166#!. It is also consistent with
the teaching of Aksentian@90# since then the configuration i
Fig. 20 is a member of the first class of 3D geometries.

The means of singularity identification in Turteltaub a
Wheeler@165# is via asymptotics on line integral represen
tions and is quite analytically sophisticated. With further a
plication, no doubt it could produce results for other norm
loadings. Too, it can treat shear tractions on the half-sp
surface~see later!. Here, instead, we next develop a mo
limited approach. While this approach cannot treat sh
tractions, it is simple for normal loadings.

A potential representation of the stresses within an ela
half-space free of surface shear tractions is given in Sec
5.7, Green and Zerna@167#. This representation can be e
pressed in terms of a single harmonic functionC
5C(r ,u,z), with r , u, and z as in Fig. 20. AssumingC
admits to a Taylor’s series expansion inz, the nonzero
stresses in the surfacez50 then are given by:

H s r

su
J 5F H2n

1 J ¹2C H 1

2J ~122n!
]2C

]r 2 G
(5.35)

sz5¹2C, t ru5
122n

r

]

]r S 1

r

]C

]r D
In ~5.35!, ¹2 is the Laplacian inr andu coordinates. Further
becauseC is harmonic inr , u, andz, ¹2C52]2C/]z2, a
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result used in~5.35!. Now with a view to representing a
constant normal pressure over a sector, we take

C5r 2F (
n50

`

~an cosnu!1â2 ln r cos 2uG (5.36)

The r -dependence in~5.36! realizes asz from ~5.35! which
is independent ofr , as desired. By suitably selecting th
Fourier coefficientsan in the summation in~5.36!, it would
appear to be possible to represent a step pressure on
sector with2f̂/2,u,f̂/2. However, when just the terms i
the summation in~5.36! are substituted into~5.35!, thesz so
produced lacks a contribution froma2 . Needed, therefore, is
the â2 term in ~5.36!. With this addition, a complete repre
sentation for a constant pressure on the sector results.
with this addition, the log singularity terms of~5.34! result
~on transformings r , su , andt ru into their counterparts in
rectangular coordinates!.

One consequence of the foregoing development is
any pressure distribution which is constant inr and even inu
on a sector in Fig. 20 has a log singularity associated wit
(f̂5p,2p). Thus, for example, if in~5.33!

sz5H 2p cos
pu

f̂
for 2f̂/2<u<f̂/2

0 for other u

(5.37)

there is an associated log singularity. This pressure distr
tion has no jumps atu56f̂/2, but still has a jump asr
→0 for 2f̂/2,u,f̂/2. A similar development leads to
log singularity if the pressure distribution is odd inu on the
surface sector, provided there is still a jump in the distrib
tion as asr→0 (f̂Þp,2p). On the other hand, if in~5.33!

sz5H 2pr for 2f̂/2<u,f̂/2
0 for other u

(5.38)

there is no log singularity (r 3 is now the factor outside the
brackets in~5.36!, and anâ3 term is required instead ofâ2).
This pressure distribution does have jumps atu56f̂/2, but
none asr→0. Clearly, then, log singularities like that o
~5.34! are associated with jumps inr rather thanu. Away
from O, this outcome is consistent with Aksentian@90# and
the absence of singularities with pressure jumps in two
mensions.

If the sector in Fig. 20 is loaded via uniform shear tra
tions rather than pressures, log singularities result along
edges of the sector. Forf̂5p/2, these log singularities ar
contained in results in Smith and Alavi@168#, Shah and
Kobayashi@169#, and Liao and Atluri@170#. For generalf̂,
they are identified in Turteltaub and Wheeler@165#. For the
component of the shear traction normal to the sector bou
ary, the log singularities are as for plane strain~Kolossoff
@15#!. For the component parallel, as for antiplane sh
~Ting @104#!. Again, therefore, away fromO a realization of
the equivalence in Aksentian@90#.

di-
ylord
29A convenient compendium of the 3D field equations of elasticity in all three coo
nate systems eventually used in this section is provided in Ch 2, Hughes and Ga
@163#.
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Fig. 22 a! Rigid punch with a wedge-shaped flat base pressed
an elastic half-space,b! dual crack problem
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all for 0,r ,` ~see Fig. 22a for coordinates!. The homoge-
neous part (u050) of this punch problem has a dual o
equivalent crack problem. The latter has a full elastic sp
with a crack on thexy plane whenf̂/2,uuu<p, a crack
ligament in the same plane whenuuu,f̂/2 ~Fig. 22b!. Under
symmetric loadingF, this crack configuration can be treate
as a half-space with boundary conditions as in~5.39! with
u050.

For either configuration, the potential representation giv
in Green and Zerna@167# reduces analysis of the singular
ties present to the determination of those attending a sin
harmonic functionC, with C50 within the surface sector
]C/]z50 without. This is a relatively simple 3D problem
Consequently, and also because of the multiple physica
terpretations harmonic functions admit to, this problem h
been the subject of quite a number of investigations. In ch
nological order, these include: Galin@171#, Rvachev@172#,
Noble @173#, Aleksandrov and Babeshko@174#, Bažant
@175#, Walden @176#, Morrison and Lewis@177#, Brothers
@178#, Keer and Parihar@179#, Ioakimidis @180#, Takakuda
@181#, Xu and Kundu@182#, and Glushkov, Glushkova, an
Lapina@183#. The means of analysis in these references v
from primarily numerical to largely analytical. There is ge
erally good agreement as to the stress singularities unear
with these means between@173#, @175–181#, and@183#.

The analysis that stands out in its efforts to verify sing
larity exponents is Morrison and Lewis@177#. Therein, in
addition to comparing with a full set of earlier analyses, tw
independent approaches are employed to check res
These two agree to typically within 0.1%. Furthermore, su
sequent analyses in Brothers@178#, Keer and Parihar@179#,
and Takakuda@181# all display excellent agreement wit

nto

Fig. 23 Singularity exponents for varying wedge angles
Another instance of the second class of 3D geomet
involves the elastic half-space again, but this time unde
flat rigid punch on the surface sector~Fig. 22a!. The punch is
frictionless or lubricated, and indents the half-space by
amountu0 . Hence in this problem, in general, stresses a
displacements are sought throughout the half-space sat
ing: the 3D field equations of elasticity, and theboundary
conditions, on z50,

uz52u0 for 2f̂/2,u,f̂/2

sz50 for f̂/2,uuu<p (5.39)

tyz5tzx50 for 2p,u<p
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singularity exponents calculated in Morrison and Lew
@177# ~to within 1%!. Accordingly these are the results sum
marized here.

Singularity exponentsg for varying wedge anglesf̂ are
presented in Fig. 23. Thereg is as in

szu
z50

5O~r 2g! as r→0 (5.40)

for 2f̂/2,u,f̂/2. For f̂52p there is no singularity (g
50). This is as it should be when the punch indents
entire half-space surface. Forf̂5p, g51/2. This, in con-
junction with the u-dependence insz on z50, realizes
inverse-square-root singularities as the edges of the pu
are approached. That is, for example,

szu
z50

5OS 1YAr S f̂

2
2u D D as u→ f̂2

2
(5.41)

These inverse-square-root singularities on the edges of
punch are also present for all wedge anglesf̂Þ2p. Away
from O, they represent a further demonstration of t
equivalence with plane strain response of Aksentian@90#.

Of course, the dual crack problem has the same singu
ity exponents as shown for the frictionless punch in Fig.
In contrast to the 2D situation, however, its antisymme
counterpart does not necessarily share the same expon
This antisymmetric crack problem can also be treated a
half-space problem. Then the boundary conditions are, oz
50,

ux5uy50 for2f̂/2,u,f̂/2

sz50 for 2p,u<p
(5.42)

tyz5txz50 for f/2,uuu<p

all for 0,r ,`. Associated singularity exponents are calc
lated in Parihar and Keer@184#. These exponents depend o
Poisson’s ratio. Forn50, they are the same as for the sym
metric crack. FornÞ0, they differ. Exponents forn50.5
differ most and are plotted in Fig. 23 with a dotted curv
Exponents forn50.3 are also given in Parihar and Ke
@184#.

A further configuration involving the wedge-shape
punch takes the punch to adhere to the half-space rather
to allow frictionless slip. Then the boundary conditions b
come, onz50,

uz52u0 , ux5uy50, for 2f̂/2,u,f̂/2

sz5tyz5tzx50 for f̂/2,uuu<p (5.43)

all for 0,r ,`. This punch problem also has a dual cra
problem. The latter is for an interface crack with one ma
rial being rigid.
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The adhering punch problem is less tractable than the f
tionless case, and leads to complex singularity expone
The real part of such exponents is included in Fig. 23 a
broken line. For 0,f̂<45°, these results are from Parih
and Keer @185#: for f̂590°, from Brothers@178#. These
exponents are forn50.3. Forn50.5, results for the adhering
punch are the same as for the frictionless case. For othen,
see Parihar and Keer@185#, which also gives the imaginary
parts of exponents. While the magnitude of the real par
less than the singularity exponent for the frictionless case
the range 0,f̂<90° in Fig. 23, the oscillatory nature a
tending these complex exponents makes these singula
arguably more pathological. Again, at the edges of the pu
(u→6f̂/2), plane strain response occurs. That is, inver
square-root singularities with oscillatory multipliers as
Abramov @186#.

Our final instance of the second class of 3D geomet
involves an elastic solid with a 3D reentrant corner. When
this corner has faces which are perpendicular to one ano
the configuration is tantamount to removing an octant from
full elastic space~Fig. 24; sometimes termed the Fiche
vertex!. This geometry can be viewed as a wedge with
vertex with an angle of 3p/2 and which follows a path which
turns abruptly throughp/2 at O. Hence it qualifies for our
second class. When the corner is stress free, the boun
conditions are:

sx5txy5tzx50 at x50 for y.0 and z.0

sy5tyz5txy50 at y50 for x.0 and z.0 (5.44)

sz5tzx5tyz50 at z50 for x.0 and y.0

where the coordinate system used is as in Fig. 24. The do
nant singularities that can be present atO for this stress-free
corner are estimated in Abdel-Messieh and Thatcher@187#,

Fig. 24 Three-dimensional reentrant corner
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Schmitz, Volk, and Wendland@188#, and Glushkov, Glush-
kova, and Lapina@183#. There is good agreement betwe
the first and third sources of numerical values of singula
exponents. Forn ranging from 0.2 to 0.5, dominant singula
ity exponents from both sources exceed 0.58. This is stron
than the corresponding 2D reentrant corner~dominant g
50.46). Two-dimensional plane strain and antiplane sh
singularities can be expected to be possible away fromO
~from Aksentian@90#!.

5.3 Three-dimensional geometries with crack-surface
intersections

As an initial instance of thethird class of3D geometries, we
consider an elastic half-space loaded transversely to a c
within it, with the crack intersecting the half-space’s fr
surface~Fig. 21!. We begin with when the crack front inte
sects this surface at right angles (f̃5p/2 in Fig. 21!. Under
Mode I loading, symmetry enables attention to be confin
just a quarter-space (y.0, z,0 in Fig. 21!. Hence in this
problem, in general, stresses and displacements are so
throughout the quarter-space satisfying: the 3D field equa-
tions of elasticity; stress-free crack conditionson the crack
flank,

sy5tyz5txy50 on y50 (5.45)

for x.0 andz,0; symmetry conditionsahead of the crack

v50, tyz5txy50, on y50 (5.46)

for x,0 and z,0; and free-surface conditionson the
quarter-space surface,

sz5tzx5tyz50 on z50 (5.47)

for all x and fory.0 ~see Fig. 21 for the rectangular coo
dinate system used!. As this particular 3D configuration is
going to merit extensive discussion, hereafter we sim
term it the 3D crack problem.

Over the years, there have been numerous contribution
the literature which address various aspects of the 3D c
problem—see Panasyuk, Andrejkiv, and Stadnik@189,190#
for reviews which together cite some 500 related referen
Focusing on singularity identification at the crack-surface
tersection point (O in Fig. 21!, Sih @191# provides a review
through the 1970s. In chronological order, contributions
this aspect since include: Folias@192#, Kawai, Fujitani, and
Kumagai @193#, Benthem @194#, Bažant and Estenssor
@195–197#, Sinclair@198#, Benthem@199#, Yamada and Oku-
mura @200#, Burton et al @201#, Takakuda@181#, Shaofu,
Xing, and Qingzhi@202#, Shivakumar and Raju@203#, Zhu
@204#, Barsoum and Chen@205#, Ghahremani@206#, Leung
and Su@207,208#, Su and Sun@209#, and Glushkov, Glush-
kova, and Lapina@183#. Together these papers are testimo
to the challenge of the preceding asymptotic problem. Wh
none of these papers solves the 3D crack problem comple
analytically and correctly for all values of Poisson’s ratio
stress singularity at the intersection point has been cle
identified at this time. This identification relies on seve
papers, and on both largely analytical treatments and pri
n
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rily numerical ones. We summarize the singularity so fou
next, then offer some comments on other analyses that m
appear to disagree with it to varying degrees.

For f̃5p/2 in Fig. 21, the crack front coincides with th
negativez axis. At the outset, then, we note thatfor z,0 the
3D crack of Fig. 21 belongs to our first class of 3D geo
etries. Thus Aksentian@90# applies and the stress singulari
for 2D plane strain should result at such locations. That

s5O~r 21/2! as r→0 for z,0 (5.48)

whereins continues as any stress component andr is the
radial coordinate in Fig. 21. It follows that any investigatio
of the singular response atO should include the singularity
in ~5.48! if the crack front is approached away fromO.

Returning attention to the singular response right atO,
the investigation that has led to a clear identification of str
singularity there is Benthem@194#. In @194#, stresses are as
sumed to be separable in spherical polar coordinates~Fig.
21!, with

s5r2g f ~u!g~c! as r→0 (5.49)

Using Boussinesq-Papkovich-Neuber potentials then ena
the 3D field equations of elasticity to be complied with a
yields trigonometric functions forf (u), associated Legendr
functions forg(c). Suitably selecting and combining thes
solutions satisfies exactly the symmetry conditions~5.46!
and the stress-free crack conditions~5.45!. The only remain-
ing conditions, the stress-free surface conditions~5.47!, are
then satisfied approximately with sums of series of solutio
complying with all other requirements~see@194# for details
of the numerical method adopted to this end!. Hence, largely
an analytical approach which could be viewed as an ex
sion to three dimensions of that in Williams@2# for two di-
mensions.

Results recover~5.48! on the crack front away fromO as
they should. They also recover the plane strain stresses
their inverse-square-root singularity (g51/2) when n50,
the one value of Poisson’s ratio for which plane stra
stresses satisfy the stress-free surface conditions. For o
values ofn,g,1/2 and the singularity is weaker. This ge
eral tend ofg51/2 for n50 with g,1/2 for n.0 is con-
firmed in a number of investigations subsequent to Benth
@194#: Bažant and Estenssoro@195–197#, Benthem@199#,
Yamada and Okumura@200#, Burton et al@201#, Takakuda
@181#, Shaofu, Xing, and Qingzhi@202#, Shivakumar and
Raju @203#, Barsoum and Chen@205#, Ghahremani@206#,
and Glushkov et al@183#.

The precise values of the singularity exponentg for n
.0 in Benthem@194# are confirmed in Benthem@199# with
what is in essence a direct numerical analysis. The indep
dent approach in Benthem@199# leads to values that typically

differ by 1/3% and have a maximum difference of 11
2%.

Further confirmation of the precise values ofg for n.0 in
Benthem@194# is provided by the analyses in Bazˇant and
Estenssoro@195,197#, Takakuda @181#, and Ghahreman
@206#. The average difference between numerical valu
given in the first three references and corresponding va
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Fig. 25 Singularity exponents for varying Poisson’s ratios fo
quarter-plane crack in an elastic half-space
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terization of the stress and displacement fields there. In te
of the spherical polar coordinates of Fig. 21, the first has

sz5K
cosc cos~~112n!~p2c!!

r2nAr sinc
cos

u

2
as r→0 (5.50)

whereK is a constant~independent ofr, c, andu!, while the
second has

s5O~r21/222n!, u5O~r1/222n!, as r→0 (5.51)

where u is any displacement component. Away from th
crack-surface intersection point,~5.50! recovers the inverse
square-root singularity that must occur at the crack fr
~that is, for c→p, rÞ0). For n50, ~5.50! recovers an
inverse-square-root singularity asr→0, the same singula
character as in Benthem@194#. For nÞ0, the singularity in
~5.50! is stronger. This is in contrast to the singularity
Benthem@194#. Indeed forn.1/4, even the displacement
are unbounded. This has led to some discussion: Bent
and Koiter@211#, Folias@212,213#.

Unbounded displacements are even less physically ap
priate than singular stresses. While singular fields with
bounded displacements are possible for the 2D crack, fo
nately one can prove that they need never participate~via the
completeness argument in Gregory@11#!. Unfortunately, no
such proof currently exists for 3D cracks. Therefore, the
bounded displacements of Folias@192# cannot be ruled out as
possible participants in the 3D crack problem, despite th
lack of physical appeal.

There is, though, a valid objection to the singularity giv
in Folias @192# in its present form. By virtue ofz50 being
free of shear tractions, the third stress equation of equi
rium has]sz /]z50 at z50. Equivalently, in terms of the
spherical polar coordinates of Fig. 23,

1

r

]sz

]c
50 at c5p/2 (5.52)

From ~5.50!,

]sz

]c
5K

sinpn

r2nAr
cos

u

2
at c5p/2 (5.53)

Aside for the casen50, then, equilibrium is not complied
with by the explicit singular stress given in Folias@192#. Of
course, the method of solution construction adopted in@192#
assures satisfaction of the equilibrium equations by the st
fields in toto. Thus there must be further contributions to
stress field in Folias@192#, not to date explicitly extracted
that combine with~5.50! to restore this compliance. In orde
to do this, these further contributions must share the sa
dependence onr as in~5.50!. Consequently there is the pos
sibility they may completely remove singular fields whic
behave as in~5.51!. Not to say that this has to happen, ju
that it could. As a result, Folias@192# cannot be relied on for
singularity identification in the 3D crack problem.

Kawai, Fujitani, and Kumagai@193# attempts to identify
local stress singularities for the 3D crack problem. This p
per assumes the stresses can be represented as in~5.49! and
Benthem @194#. Thereafter it determines forms for th

a

in Benthem@194# is less than 1/20%, while the maximum
difference is less than 1/10%. In the fourth reference
graphical comparison is made and shows all theg values in
Benthem@194# lying on ag-value curve computed in Ghah
emani@206#. All told, there is now excellent confirmation o
the singularity exponents in Benthem@194#. Accordingly, we
present these singularity exponents here in Fig. 25.

While, at this time, there would appear to be no doubt
to the existence of a stress singularity of the form of~5.49!
with exponents as in Fig. 25, this does not mean that th
cannot be other singular fields for the 3D crack problem.
completeness argument is advanced in the literature
stresses of the form of~5.49!: Absent such, other singulari
ties are not precluded. Conversely, absent a companion c
pleteness argument, another form of singularity for the
crack problem does not invalidate the singularity identifi
in Benthem@194#.

There are, in fact, quite a number of other approache
the literature aimed at identifying alternative stress singul
ties to that of Benthem@194#. We review these efforts in
chronological order next.

Folias@192# attempts the ambitious task of finding an an
lytical solution for a truly 3D,global, crack configuration.
This configuration entails a through crack, in a plate of fin
thickness, with crack fronts orthogonal to the stress-f
plate faces and under transverse far-field tension. In the
cinity of where one of the crack fronts intersects a plate fa
the 3D crack problem is contained. The analysis employs
symbolic method of Lur’e~Section 3.2,@210#!. Results in-
clude an explicit expression for the singular part ofsz at the
crack-surface intersection, as well as an asymptotic cha
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stresses and displacements so that the field equations of
ticity are complied with: These forms are similar to those
Benthem@194#. Then it proceeds to satisfy the symmet
conditions~5.46! and the free-surface conditions~5.47! ex-
actly, the stress-free crack conditions~5.45! approximately:
This is in contrast to Benthem@194# which satisfies the free
surface conditions approximately. Results include one sin
larity which is similar to that in Benthem@194# in that it
shares diminishing strength with increasingn having started
from an inverse-square-root singularity whenn50. Expo-
nent values for this singularity, however, do differ apprec
bly from those in@194# ~by 40% whenn51/2). Results also
include a stress singularity which is stronger than an inve
square-root singularity for all values ofn. If a valid result,
this last would represent an additional and distinctly differ
singularity from that identified in Benthem@194#.

The issue of validity in Kawai et al@193# stems from its
use of series of associated Legendre functions to satisfy
stress-free crack conditions. In terms of the spherical p
coordinates of Fig. 21, the series involve, for example,

Pl
2l12n12~2cosc!5O~~p2c!l22n22! as c→p

(5.54)

for n51,2,..., andl,2.30 Stresses with such terms cann
converge to zero on a plane includingc5p. Moreover, such
terms lead to singular stress behavior at the crack frontc
→p) away from the crack-surface intersection that is kno
not to occur. Hence, the stress singularities in Kawai et
@193# need to have it established that they are comple
free of such terms in order for them to be admissible. To d
this would not appear to have been done.

Sinclair@198# attempts to identify local stress singularitie
for the 3D crack problem. This paper assumes that stre
are separable in cylindrical polar coordinates. It satisfies
field equations of elasticity exactly with forms comprised
elementary functions. It also satisfies the stress-free c
and symmetry conditions,~5.45! and ~5.46!, exactly. How-
ever, it only attempts to satisfy the free-surface conditio
~5.47! for sz with a term which is itself asymptotically zer
as the crack tip on the surface is approached~the actual re-
sidual beingO(r 3/2) asr→0 thereon!. Results for the domi-
nant singularity have

ŝ5O~z2/Ar ! as r→0 (5.55)

whereinŝ is any stress component other thantuz and t rz ,
these last being nonsingular~see Fig. 21 for the cylindrica
polar coordinates used!. Away from the crack-surface inter
section point, the appropriate inverse-square-root singula
is recovered at the crack front. Forn50, the known inverse-
square-root singularity is not recovered in the surface az
50. The general trend of a weakening of singular respo
as the free surface is approached is reflected in~5.55!, but
now by a reducing singularity coefficient rather than a red
ing singularity exponent.
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The absence of the plane strain singularity forn50 does
not necessarily invalidate a singularity identified for the 3
crack. While completeness~Gregory @11#! and uniqueness
~Knowles and Pucik@12#! mean that any loading of the 3D
crack which is independent ofz must produce these plan
strain fields whenn50, this does not have to be the ca
when loading is not independent ofz.

The real objection to the simple analysis in Sinclair@198#
lies in its satisfaction of the free-surface conditions. Boun
ary conditions are known to effect the nature of stress sin
larities considerably in elasticity. Hence, satisfying the fre
surface conditions in only an asymptotic sense is quite lik
to change the nature of any singularity found. Thus, wh
results in Sinclair@198# may indicate a possible trend fo
singularities in the 3D crack problem, they fall far short
actually identifying a possible stress singularity.

Shivakumar and Raju@203# attempts to identify two local
stress singularities for the 3D crack problem. In this pa
the singular stresses are assumed to admit representatio

s5F~u,z!r 21/21G~c,u!r2g as r→0 or r→0
(5.56)

whereF and G are continuous functions.31 Analysis is via
finite elements with fitting used to estimate singulariti
present. This fitting is undertaken for each term in~5.56!
separately. Away from the crack-surface, results recover
inverse-square-root singularity that must occur. Forn50
they recover the known plane strain singularity~automati-
cally, by the superposition employed!. For n→0, they indi-
cate that the functionF is zero or negligibly small. Forn
.0, they also estimate singularity exponents which are
good agreement with Benthem@194# ~average difference
2/3%, maximum difference3/2%).

Zhu @204# attempts to identify local stress singularities f
the 3D crack problem. This paper assumes stresses are
rable in cylindrical polar coordinates. Analysis is via a com
bination of two solutions. The first is for a crack in plan
strain. The second removes surface tractions atz50 from the
first. It is derived from a single harmonic potential~after
Section 5.7, Green and Zerna@167#!. The 3D aspects of the
analysis are limited to the planez50. Within this plane, all
field equations and boundary conditions in the 3D cra
problem are satisfied. Unfortunately, in meeting the she
free conditions on the crack flanks, continuity of crack fla
displacements is required in the second solution. When
face tractions are applied to a cracked half-space, such
tinuity is generally not the case. Hence the analysis is
monstrably incomplete. Away from the crack-surfa
intersection point, the inverse-square-root singularity t
must occur is recovered automatically by construction. F
n50, the known plane strain singularity is likewise reco
ered. Forn→0, results show a persistence of the invers
square-root singularity in the free surface atz50. The coef-
ficient of the singularity is reduced from that away from t

31Observe, therefore, that the second term in~5.56! is not the same as in Benthem
@194#. In @194#, G(c,u) contains terms which areO((p2c)21/2) asc→p.
30See, eg, Ch 8, Abramowitz and Stegun@139#, for the asymptotic behavior given in
~5.54!.
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surface by a factor of (12n22n2). This factor is 1 when
n50, appropriately, 5/8 whenn51/4, and 0 whenn51/2.

While all of analysis in Zhu@204# is correct, the 3D so-
lution found is really only valid in the surfacez50. If in-
stead it held for allz in the half-space, it would be possib
to simply take the stresses it produced on the surface
subregion within the half-space as prescribing tractio
thereon and so pose a problem for which the fields in Z
@204# are applicable. Absent a solution for other thanz50,
however, there is no guarantee that the fields in Zhu@204#
ever participate in an actual 3D crack problem. They cou
though, in which case they would represent an additional
complementary singularity to that found in Benthem@194#.

Leung and Su@207# attempts to identify local stress sin
gularities for the 3D crack problem. This paper superimpo
the singular crack-tip stresses in plane strain with stres
that are assumed to be separable in spherical polar co
nates. The latter have to have an inverse-square-root si
larity to effect the removal of the stresses from the former
the surface atz50. They are analyzed with finite element
By construction, appropriate singular behavior results aw
from the crack-surface intersection point and forn50. For
n→0, a drop in the coefficient of the inverse-square-ro
singularity is indicated at the free surface.

Leung and Su@208# attempts the same identification a
@207#, but primarily by analytical means rather than nume
cal. After superposing the plane strain fields, the appro
for the residual problem follows that in Zhu@204# and uses a
single harmonic potential. In fact, the approach in Leung a
Su @208# could be interpreted as an attempt to extend
results of Zhu@204# for the surface into the interior. In mak
ing this attempt, however, the approach follows that
Kawai et al @193# rather than that in Benthem@194#. As a
result, in its present form it suffers from the same lack
convergence and from the introduction of inadmissible s
gular stresses on the crack front. Consequently, the resu
Leung and Su@208# cannot be accepted at this time.

Su and Sun@209# attempts to identify local stress singu
larities in a global configuration entailing a through crack
a plate~the same geometry as in Folias@192#!. This paper
employs an interesting decomposition of the fields involv
into a plane stress state, a shear stress state, and a Papk
Fadle state. Each of these states is assumed to be separa
cylindrical polar coordinates. Series of solutions are e
ployed. The analysis is analytical with the minor excepti
of the routine numerical determination of the eigenvalu
used in the Papkovich-Fadle expansion. Results recove
appropriate singular behavior away from the crack-surf
intersection point and forn50. Forn.0, the dominant sin-
gular character identified is the same as in~5.55!. As noted in
~5.55! et seq,tuz andt rz are nonsingular. Hence they are n
explicitly given in Su and Sun@209#. They are needed
though, to ensure satisfaction of the equilibrium equations
the singular stress components. Unfortunately, when th
shear stress components are derived from the displacem
given in Appendix I of Su and Sun@209#, it transpires that
they are not zero on the plate faces. This is in violation of
free-surface conditions. If this shortcoming in the promisi
e
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approach in Su and Sun@209# were to be rectified, it would
appear that this paper would lead to the first essentially a
lytical solution for a singularity in the 3D crack problem. A
this time, however, it cannot be accepted as such.

In sum for the 3D crack problem, the current state
research findings is as follows. Away from the crack-surfa
intersection point, an inverse-square-root stress singula
occurs, and only it occurs. ‘‘Away’’ includes arbitrarily clos
to the point, but not at it. Consequently, all singularities f
the 3D crack problem may be viewed as characterizing
participation of this inverse-square-root singularity as
free surface is approached. Viewed in this light, Benth
@194# provides the only truly confirmed singularity identifie
to date, with

s5OS r1/22g

Ar sinc
D as r→0 (5.57)

In ~5.57!, the spherical polar coordinates are as in Fig.
and the singularity exponentg as in Fig. 25. Forn50, g
51/2. Then the crack-tip singularity for plane strain applie
For nÞ0, g,1/2. Hence the participation of the invers
square-root singularity goes to zero in the free surface for
singularity identified in Benthem@194#. There may be other
singularities for the 3D crack, some of which may not ha
this participation go to zero in the free surface. The existe
of these alternative singularities would not invalidate the s
gularity in Benthem@194#. As of now, any such other singu
larities have yet to be properly identified.

A further instance of the third class of 3D geometries
the antisymmetric counterpart of the 3D crack proble
Herein the formulation is the same as for the 3D crack pr
lem except that the symmetry conditions~5.46! are ex-
changed for antisymmetry conditions:

u5w50, sy50, on y50 (5.58)

for x,0 andz,0, whereu andw are displacements in thex
andz directions, respectively.

Benthem@199# analyzes the antisymmetric 3D crack via
finite difference approach. Singularity exponents appea
have converged to within about 2% in Benthem@199#. Two
branches of singularity exponents for varyingn are identified
by this means. One branch is for a stronger singularity th
the symmetric case, one weaker. The exponents for the s
ger singularity are confirmed in Bazˇant and Estenssoro
@196,197# ~typically to within 2%!. They are also confirmed
in Ghahremi @206#. Exponents for both the stronger an
weaker singularities from Benthem@199# are included in Fig.
25 for varying Poisson’s ratios.

Alternative singularities may exist for the antisymmetr
3D crack problem. Again these would not invalidate tho
identified in Benthem@199#. An indication of a possibility in
this regard is given in Meda et al@214# which uses the very
limited approach of Sinclair@198# to arrive at singular char-
acter as in~5.55!. The same singular character is obtained
different means in Appendix II, Su and Sun@209#, but insuf-
ficient details are furnished therein to enable checking.

As two last instances of the third class of 3D geometri
we consider two further crack-intersection configuratio
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Fig. 26 Singularity exponents for varying angles of intersect
for a symmetrically-loaded crack in an elastic half-space
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Some remarks on the effects of other field equations
singularities are given in Part I, Section 2.1. These conc
the possible removal of stress singularities by relaxing any
the three linearizations of classical elasticity. These three
earizations are: the small stress assumption that stresse
main below yield levels, the small strain assumption th
strains are linearly related to displacement gradients, and
small deflection assumption that the loads act in their entir
on the undeformed state. Relaxing the first two linearizatio
entails switching to the field equations ofelastoplasticityand
large strain elasticity, respectively. A relaxation of the third
can be made by applying the field equations of classical e
ticity, together with loading conditions,on deformed states
instead of undeformed. For each of these modifications to
field equations, analysis is nonlinear and consequently
tractable than that for classical elasticity. The general find
of such analysis is that relaxing any of the three lineariz
assumptions of classical elasticity does lead to a differ
singular character. Further, typically the resulting singu
character is less nonphysical~for example, the replacemen
of oscillatory stress singularities for the interface crack w
a nonoscillatory singularity!. Occasionally a singularity is
even removed~for example, the singularity at an adhesiv
butt joint present in classical elasticity is absent from a la
strain treatment!.32 However, the great majority of singulari
ties in classical elasticity persist, albeit in altered forms,
any of these modifications to the field equations. Thus n
of these modifications is really successful when it comes
removing stress singularities from classical elasticity.

Here we consider some other changes to the field eq
tions of classical elasticity. We distinguish these modific
tions as follows: changes in the stress equations of equ
rium, changes in the stress-displacement relations,
changes to both. We consider each type of modification
turn next.

As a first simple change to the stress equations of e
librium, we consider the effects of introducingbody-force
fields, heretofore taken as null. Then, for example, the fi
equilibrium equation for in-plane loading in~2.2! becomes

]s r

]r
1

1

r

]t ru

]u
1

s r2su

r
1Fr50 (5.59)

where Fr is the radial component of the body-force fiel
What is apparent from~5.59! is that for body forces to effec
stress singularities which behave asO(r 2g) as r→0, they
themselves have to behave asO(r 2g21). Such body forces
would not seem likely to be needed in practice. Hence str
singularities in elasticity can be expected to be unaffected
the presence of body-force fields.33

There is one possible exception to the foregoing in t
dimensions. This is the line-load body force. For such
body-force field,

Fr5FA /r , Fu50 (5.60)

on
not

face
The first further crack-intersection configuration entails cra
fronts which are not orthogonal to the free surfacef̃
Þp/2 in Fig. 21!. Motivated by a search for an energy r
lease rateGI satisfying 0,GI,` in the free surface, Bazˇant
and Estenssoro@195–197# seek an anglef̃ such thatg
51/2. This leads tof̃.p/2 for the symmetric case. Value
of such f̃ are given in Bazˇant and Estenssoro@197# for n
ranging from 0.0 to 0.4. These values are confirmed in B
ton et al@201# and Takakuda@181# ~typically agreement is to
within 1%!. The antisymmetric case is also treated in Bazˇant
and Estenssoro@197#. This leads tof̃,p/2. Singularity ex-
ponents other thang51/2 are tabulated in Takakuda@181#
for 0<n<1/2 and otherf̃ under symmetric loading. Forn
50.0, 0.4, these results are illustrated in Fig. 26.

The second and final, further, crack-surface intersec
configuration is as for the 3D crack problem but now w
two materials comprising the half-space. Singularities
this 3D interface crack are identified in Bazˇant and Estens
soro @197#, Barsoum and Chen@205#, and Ghahremani and
Shih @215#.

5.4 Other field equations

While it falls outside the stress singularities in classical el
ticity reviewed so far, it is nonetheless appropriate in clos
this review to offer a few comments on the effects of oth
field equations on singularities. It is appropriate because
singularities attending other field equations are quite of
directly related to those in classical elasticity. The intent h
is to indicate this sort of connection, rather than extensiv
explore it. Accordingly, references cited here are by way
example, rather than anything approaching a comprehen
listing.
ely
of
sive

32As explained in Part I, Section 2.1, the introduction of perfect plasticity does
really qualify as a modification that removes a singularity.
33Plate bending singularities are similarly unaffected by the presence of plate
loading: see Sections 4.3 and 4.4.
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whereFA is a force per unit area. Then directly from~5.59!
and the second of~2.2!,

s r5su52FA ln~r /r c!, t ru50 (5.61)

wherein r c is some characterizing radius introduced to e
sure dimensional consistency. The field in~5.61! also satis-
fies the stress equations of compatibility: It therefore co
plies with all the field equations of elasticity. Analogously
three dimensions, a point-load body force leads to a st
singularity which behaves asO(r21) as r→0. Aside from
like instances, however, stress singularities in elasticity
be expected to be the same with body forces as without

As a second change to the stress equations of equilibr
we consider the introduction of inertial terms. Then the
equations becomeequations of motion. This change can be
viewed as mathematically equivalent to introducing a bo
force field. For example, in~5.59!, set

Fr52rm

]2ur

]t2 (5.62)

whereinrm is the mass density andt is time. Then the equa
tion of motion in the radial direction is recovered. Similar
the equation of motion in the angular direction can be rec
ered. Accordingly we can expect singularities attend
equations of motion to be similar to those for elastosta
with body forces.

As an initial instance of dynamic response, we consi
the case ofvibrationsof elastic media. If the vibratory mo
tion has frequencyv, then one may take

ur5ûr~r ,u!sinvt (5.63)

Assuming the same vibratory dependence for the other
placement component and the stresses enables sinvt and the
time dependence to be factored out of the equations of
tion. Then we have exactly the same equations as for
introduction of body forces. Consequently no changes
stress singularities from those in classical elasticity are to
expected when vibrations are introduced. That this is s
demonstrated for antiplane shear in Sagochi@216#. It is fur-
ther demonstrated for out-of-plane bending within four
order theory in Leissa, McGee, and Huang@121#, and within
sixth-order theory in Huang, McGee, and Leissa@134#.34

For the more general case ofelastodynamicresponse
wherein motion is transitory rather than vibratory, the sa
sort of correspondence should occur whenever the stress
displacement fields are separable in their spatial and tem
ral dependences. This separable nature need not be wit
spect to a stationary coordinate system for a correspond
to hold. A demonstration is given in Achenbach and Bazˇant
@218# for propagating cracks. For both antiplane shear a
plane strain, the inverse-square-root stress singularity of e
tostatics is recovered. Now, though, theu-dependence is only
the same as the elastostatic case in the limit as the spe
crack propagation goes to zero.
s at-
. See,
n-

m-
in
ess

an

ium
se

y-

ly
v-

ng
ics

er

dis-

o-
the
to
be
is

h-

e
and
po-
re-

nce

nd
las-

d of

Turning to changes to the stress-displacement relatio
we first consider the effects of introducing temperatu
fields. The resulting field equations ofthermoelasticitycan
be couched so that they differ from those of classical elas
ity only in the stress-displacement relations~see, eg, Section
1.3, Nowacki@219#!. The same field equations can be rec
using the Duhamel-Neumann analogy~Section 1.9,@219#!.
Then they reveal that the singularities in stationary th
moelasticity are the same as in classical elasticity provi
two possible additional sources of singularity are admitt
The first additional source is the action of a normal tract
of magnitudecTT, wherecT is a material constant~propor-
tional to the material’s linear coefficient of thermal expa
sion and its bulk modulus!, and T is the temperature field
present. The second additional source is an effective bo
force field. In two dimensions, the latter can be expressed

Fr52cT

]T

]r
, Fu52

cT

r

]T

]u
(5.64)

whereFu is the u-component of the body force. It follows
that, in two dimensions, the additional singularities so p
duced come from constant normal tractions and the poss
ity of a line-source temperature field. The first can produ
logarithmic singularities as in Section 2.4. The second ent
T of O(ln r) asr→0, hence a line-load body force and log
rithmic singular stresses as in~5.61!. In three dimensions
analogous results hold. For an elastic half-space with a c
stant temperature on a surface rectangle and zero temper
elsewhere on the surface, stresses can be obtained from
tion 2.3, @219#. These stresses have logarithmic singularit
at the corners of the rectangle~cf, @164#!. At a point source in
three dimensions, the temperature and stresses areO(r21)
as r→0 ~see, eg, Section 2.12,@219#!. In addition, all the
other singularities in classical elasticity can be present
thermoelasticity.35

A different type of modification to the stress-displaceme
relations results from varying elastic moduli. Three su
variations are entertained to a limited degree here: variat
with time, variations with position, and variations with dire
tion.

Elastic moduli can vary with time so as to reflect th
physical phenomena of creep and relaxation. When suchvis-
coelastic variations are consistent with the constrain
needed for the correspondence principle to hold, the sing
character in classical elasticity carries over to viscoelastic
If the singular stresses in elasticity are independent of ela
moduli, identical singular stresses occur in viscoelasticity
the singular stresses in elasticity are dependent on ela
moduli, singular stresses have the same singularity stre
or exponent in viscoelasticity. Now, though, the participati
of different parts of the singularity coefficient can vary
different ways with time. A statement of the corresponden
principle and a demonstration of its implications for the s
gular stresses attending a point load normal to a half-sp

ence

35The situation is more complex than this limited discussion would indicate w
multiple materials are present in thermoelasticity. Then the added discontinuitie
tending jumps in thermal conductivities can have associated stress singularities
for example, Yan and Ting@220# and Yang and Munz@221#.
34While the inclusion of vibratory response leaves singularities unaltered, the pres
of singularities can alter vibratory response: see Leissa@217#.
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are provided in Lee@222#. Further demonstrations of the co
respondence between elasticity and viscoelasticity singu
ties are given in Williams@223# for a crack.

When elastic moduli vary with position as piecewise co
stants, Sections 3, 4.2, and 4.3 summarize the numerou
lated studies in the literature for suchinhomogeneous elasti
media. The general finding of these studies is that the int
duction of additional discontinuities attending abru
changes in elastic moduli increases both the occurrence
the strength of stress singularities. This does not have to
so, though. Occasionally the singularity associated wit
discontinuity already present in a configuration can be of
by the singularity associated with an added discontinuity
elastic moduli~see, eg, the butt joint in Section 3.3!.

When elastic moduli vary with position other than
piecewise constants, there are relatively few studies in
literature. However, for the simple case of antiplane shea
is straightforward to bound the effects of a radial depende
of the shear modulus. Taking the shear modulus to vary

m5m0~r /r c!
« (5.65)

for u«u!1, provides two extremes. For«.0, m→0 as r
→0: For «,0, m→` asr→0. Then, following the analyti-
cal path laid out in Section 4.1, leads to

g512
p

f
2

«

2
, g512

p

2f
2

«

2
(5.66)

as «→0, for the dominant singularity exponents for no
mixed, mixed problems, respectively. Hence the singula
exponent is reduced when the modulus softens to zero«
.0), and it is increased when the modulus stiffens to infin
(«,0). This type of response is consistent with findings
general in this review, namely that increasing stiffness ty
cally increases singular character. It is, though, for an
treme variation in moduli. And it is not that dramatic give
this extreme variation. This suggests that the dependenc
stress singularities on more realistic radial variations of e
tic moduli may be slight if any.

To investigate this suggestion further, we take

m5m01m1

r

r c
(5.67)

This choice requiresuz be taken as a series of separab
functions with increasing powers ofr in implementing the
analytical approach in Section 4.1 instead of just a sin
separable term. Even so, the same results for exponent
obtained as in Section 4.1~viz, as in~5.66! with «50). That
is, the linear radial dependence of the shear modulus
~5.67! leaves singularity exponents unchanged from those
a constant shear modulus. By a like means, the same r
can be expected to hold for elastic plates in extension.

The third and final variation in elastic moduli that w
consider is to allow them to change with direction. Hence
admit anisotropiceffects. Ting@224#, Chapter 9, furnishes a
clear exposition of singularity identification in anisotrop
elasticity, together with an extensive set of related referen
The general finding is that the additional discontinuit
which can attend anisotropy can have associated stress
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gularities which increase the singular character over t
found in classical elasticity. Occasionally additional singu
stresses can offset those in isotropic elasticity~cf, a bimate-
rial versus a single material!. An example of such offsetting
is given in Ting@225#.

As our last modification to the field equations, and o
which effects both the stress equations of equilibrium and
stress-displacement relations, we consider the introductio
couple stresses. Field equations for a linearized theory in
cluding couple stresses may be found in Muki and Sternb
@226#. The general finding for such a theory is that the s
gularity strength remains the same as in classical theory
corresponding stresses, but dependence onu is modified.
Demonstrations of this persistence of singular stresses
given in Muki and Sternberg@226# for the half-space under a
discontinuous shear traction, normal and tangential li
loads, and a flat, lubricated, strip punch. A further demo
stration is given in Sternberg and Muki@227# for a crack in
plane strain.

6 CONCLUDING REMARKS

In classical elasticity, stress singularities occur under po
loads, lineloads, and so on. They can also occur away f
any such concentrated loading. It is the occurrence of
latter type of singularity that is reviewed here.

When stress singularities occur away from concentra
loading, they do so in concert with a discontinuity: no d
continuity, no singularity. Hence we term themdiscontinuity
singularities. The discontinuities for such singularities occ
on boundaries. In classical elasticity, these discontinuities
tail abrupt changes in boundary directions/bound
conditions/elastic moduli. In general, such discontinuit
flag the possibility of singularities. In particular, step chang
in uniform tractions or first derivatives of displacements fl
the possibility of logarithmic singularities.

The presence of a discontinuity, however, does not ne
sarily mean that there is a stress singularity. For example
the in-plane loading of an angular elastic plate, there are
singularities when the vertex angle is less than 180°, des
the presence of a sharp corner~see Sections 2.1 and 2.2!. For
the same plate as a half-plane with a step pressure applie
its edge, there are no singularities, despite the presence
abrupt change in boundary conditions~Section 2.4!. For the
same plate with one face clamped the other free, there ar
singularities when the vertex angle is less than 45°~Sections
2.1 and 2.2!. This last example is despite the presence o
sharp corner, and an abrupt change in boundary conditi
and an abrupt change in elastic moduli~clamped conditions
being attributable to attachment to a material with an infin
Young’s modulus!. Thus, while discontinuities flag possibl
stress singularities, they are not in themselves the
sources.

The real sources of discontinuity singularities are disc
tinuities in the stiffnesses in the cohesive or adhesive str
separation laws which underlie the constitutive relations
elasticity. This may not be immediately apparent for so
singularities. Some further explanation is given in Part
Sections 2 and 5.
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Table 16. State of the art of stress singularity identification in classical
elasticity

Configuration

Single material Bimaterial

Power Log Power Log

In-plane loading of a plate C C C o
Antiplane shear of a wedge C C C C
Plate bending, 4th order theory C C c o
Plate bending, 6th order theory c o o O
Axisymmetric torsion
of a cylinder

C C C C

Axisymmetric axial
loading at vertex

C c c O

Axisymmetric axial loading at
a cylindrical boundary

C C C o

Three-dimensional
away from 3D vertex

C C C o
e
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Fig. 27 Classes of configurations that are effectively equival
with respect to singularity identification:a! configurations equiva-
lent to plates in extension,b! configurations equivalent to wedges
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In two dimensions, the various discontinuity singulariti
actually identified to date in classical elasticity may be su
marized as follows. For any stress components, as the sin-
gular point is approached, elasticity can have:

s5O~r 2g cos~h ln r !!1O~r 2g sin~h ln r !!

s5O~r 2g ln r !1O~r 2g!

s5O~r 2g!

s5ord~ ln2 r !1ord~ ln r ! (6.1)

s5ord~ ln r !

s5O~ ln r !

s5O~cos~h ln r !!1O~sin~h ln r !!

as r→0, whereing is the singularity exponent (0,g,1),
and h is the imaginary part of the eigenvalue involved.
~6.1!, O is associated with locally homogeneous bound
conditions, ord with locally inhomogeneous~ord is defined
in Part I, Section 1.2!. For the former, the singularity may o
may not participate depending on other far-field bound
conditions: hence theO notation. Typically, though, once
such a singularity is identified as possible, it does particip
For the latter, the singularity’s participation is guaranteed
the inhomogeneous part of the local boundary conditio
hence the ord notation.36

Numerous such singularities are identified in the literat
for classical elasticity. Table 16 summarizes the state-of-
art of these identifications for the various, essentially 2
configurations that are reviewed here and involve one or
materials.

In Table 16,power singularitiesinclude the first three of
~6.1!. For the most part, the singularities involved are as
the third of~6.1!. There are, though, quite a few instances
singularities as in the first of~6.1!. There are relatively few
as in the second of~6.1!. In Table 16, then,logarithmic sin-
gularities include the fourth through sixth of~6.1!. These are
all weaker than power singularities. Accordingly they can
harder to detect absent an asymptotic appreciation of t
are
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possible presence. This is the reason they are separate
from power singularities in Table 16. Of course, the prese
of either type of singularity needs to be recognized if one
to avoid the futile exercise of stress-strength comparis
once either occurs.37

In Table 16, the following notation is adopted with respe
to the state-of-the-art of identifications:

C5 largely closed,c5partly closed
(6.2)

O5 largely open, o5partly open

In ~6.2!, largely closed means there are few, if any, ne
singular configurations to be identified. Moreover, any su
new configurations are not expected to occur often in pr
tice. In contrast, partly closed means there are, in fact, q
a few more singular configurations to be identified. Furth
in ~6.2!, largely open means the great majority of singu
configurations have yet to be identified, whereas partly o
means just a majority.

The bulk of singularity identifications in the literature a
for in-plane loading of an elastic plate~Sections 2 and 3!. As
a result, identification for this configuration is largely com
plete. The partly open area of log singularities in bimateri
is explained in Section 3.3. While there are fewer singula
identifications in the literature for antiplane shear, they
n

36The last stress of~6.1! is not strictly singular, being bounded asr→0. However, it is
undefined asr→0, and consequently shares some of the difficulties associated
stress singularities.
ith37The few known instances of the last of~6.1! occurring are given at the end of Sectio
2.2.
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nonetheless largely complete~Sections 4.1 and 4.2!. This is a
consequence of analysis for this configuration being re
tively simple.

These two configurations lead to singularity identific
tions for a number of other configurations. The various wa
they do this are illustrated in Fig. 27. Therein the followin
notation is used:

AE5asymptotically equivalent configuration

EM5eigenvalue equations match (6.

MA 5mathematically analogous configuration

For further explanation, see Sections 4.3, 4.5, 5.1, and
Also in Fig. 27, an arrow with a solid line denotes that t
correspondence holds for both single materials and bima
als, whereas one with a broken line just for single mater
~to date, anyway!.

There are a few singularity identifications for trimateria
These are mentioned in Sections 3.2 and 4.2.

There are 3D configurations other than those of Table
and Fig. 27 for which singularities are identified. An indic
tion of the state-of-the-art with respect to singularity iden
fication for these configurations is given in Sections 5.2 a
5.3.

A discussion of stress singularities for field equatio
other than those of classical elasticity may be found in S
tion 5.4. Typically, if a stress singularity occurs in classic
elasticity, singular stresses persist with other field equatio
Sometimes singularities persist with modified strengt
sometimes with the same. Examples of the former inclu
elastoplasticity and large strain~nonlinear! elasticity. Ex-
amples of the latter include elastodynamics, viscoelastic
thermoelasticity, and couple stress theory.
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