
b , which is in general nonzero, vanishes if the material is symmetrically
distributed with respect to the reference surface.

In the commonwise case of tt homogeneous material, and null off-
set13 we have

a = hD b = 0 c =
h3

12
D ,

i.e. the membrane stiffness varies linearly with the wall thickness,
the flexural stiffness varies with the cube of the thickness, and the
membrane and the flexural loadings are mutually uncoupled. Such a
laminate elastic properties dependence on thickness essentially holds
also for laminates, if the tt distribution of the various materials is kept
comparable.

2.1.5 The transverse shear stress/strain components

A full treatise on the title topic is, due to its complexity, bspc; starting
points for further investigation my be found in [3], [4] or in the theory
manual of your favourite fe solver14.

The two transverse shear components

γ z =

�
γ̄yz
γ̄zx

�

are in fact more directly recognizable as further contributions to the�
∂w
∂x ,

∂w
∂y

�
normal deflection gradient, with respect to what is attributable

to flexure alone, than tt averages of actual, pointwise shear strains –
see e.g. Figure 2.1.

Since no direct procedure is available15 for directly probing the γ̄yz
and γ̄zx quantities in a deflected plate, their definition is inevitably
nebulous.

The two transverse shear stress resultants defined in Eq. 2.17

q z =

�
qxz
qyz

�

13In the presence of a nonzero offset between the reference and the median planes,
the uncoupled nature of the plate membrane/flexural loadings is only formally lost.
If the same problem is considered based on a median reference plane, in fact, such
a property is obviously restored.

14See e.g. MSC.Marc 2013.1 Documentation, Vol. A, pp. 433-436
15as far as the writer knows
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are assumed to perform work16 on the same γ̄yz and γ̄zx transverse
shear components, respectively; the transverse shear contribution to
the elastic strain energy per unit ref. surface area is hence

υ‡ =
1

2
γ ⊤

z q z =
1

2
γ̄xzqxz +

1

2
γ̄yzqyz. (2.22)

The constitutive equation for the transverse shear is set at normal
segment (vs. punctual) level, with the declared aim of collecting the
elastic strain energy contributions along the thickness, and they are
usually formulated as

υ‡ =
1

2
γ ⊤

z

"
χ

�
1

h

Z

h
G−1dz

�−1

h

#

| {z }
Γ

γ z (2.23)

where G is the pointwise constitutive matrix for the transverse shear
components17 – which is considered in terms of its tt harmonic aver-
age18, χ is a shear correction factor – which accommodates for possibly
any incongruence in the formulation, and Γ is an emended transverse
shear constitutive matrix for the whole plate.

In the case of isotropic materials, G is a diagonal matrix whose
terms equate the shear modulus, i.e.

G =
E

2 (1 + ν)

�
1 0
0 1

�
,

whereas the χ shear correction factor is usually assumed as 5
6 if the

material is tt uniform19; different χ values are however proposed in
literature, see e.g. [5], along with different procedures20 for evaluating

16in particular, work for unit reference surface area

17 G is the 2 by 2 matrix s.t., pointwisely,

�
τzx
τyz

�
= G

�
γzx
γyz

�
.

18the shear sliding is accumulated across the various layers, rather than the elastic
reactions, thus assuming an in series layout of equivalent springs

19please note the parallel with the inverse 1.2 correction factor for the shear
contribution to the beam elastic strain energy, proper of the solid rectangular cross
section.

20we report as an example the notable case of of honeycomb panels – whose
transverse shear compliance is rarely negligible, in which Γ is defined as the G foam

transverse shear constitutive matrix for the foam/honeycomb material interposed
between the outer skins, multiplied by the overall panel thickness h; in this case the
χ transverse shear correction factor is implicitly defined as unity.
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Γ . By comparing Eqns. 2.22 and 2.23 we also derive the de facto
transverse shear constitutive relation

q z = Γ γ z. (2.24)

for the Mindlin shear deformable plate.
In the case pointwise values are requested for the τzx and τyz stress

components – e.g. in the analysis of interlaminar stresses in composite
laminates, those quantities are derived from the assumed absence of
shear stresses on the lower surface, and by accumulating the ip stress
component contributions to the x and y translational equilibria up to
the desired z sampling height. We hence obtain

τzx(z) = −
Z z

−h
2
+o

∂σx
∂x

+
∂τxy
∂y

dz =

Z +o+h
2

z

∂σx
∂x

+
∂τxy
∂y

dz (2.25)

τyz(z) = −
Z z

−h
2
+o

∂τxy
∂x

+
∂σy
∂y

dz =

Z +o+h
2

z

∂τxy
∂x

+
∂σy
∂y

dz. (2.26)

The parallel is evident with the Jourawsky theory of shear for beams.

2.1.6 Hooke’s law for the orthotropic lamina

Hooke’s law for the orthotropic material ip stress conditions, with re-
spect to principal axes of orthotropy;

D 123 =




E1
1−ν12ν21

ν21E1
1−ν12ν21

0
ν12E2

1−ν12ν21
E2

1−ν12ν21
0

0 0 G12


 (2.27)




σ1
σ2
τ12


 = T 1




σx
σy
τxy







ϵ1
ϵ2
γ12


 = T 2




ϵx
ϵy
γxy


 (2.28)

where

T 1 =




m2 n2 2mn
n2 m2 −2mn

−mn mn m2 − n2


 (2.29)

T 2 =




m2 n2 mn
n2 m2 −mn

−2mn 2mn m2 − n2


 (2.30)
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