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Chapter 1

Spatial beam structures
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1.1 Beam axis and cross section definition

1 A necessary condition for identifying a portion of deformable body
as a beam – and hence applying the associated framework – is that its
centroidal curve is at least loosely recognizable.

Once such centroidal line has been roughly defined, locally perpen-
dicular planes may be derived whose intersection with the body itself
defines the local beam cross section. Then, the G centroid position
may be computed for each of the local cross sections, thus defining a
second, refined centroidal line. A potentially iterative definition for the
beam centroidal axis2 is hence obtained. A rather arbitrary orientation
may then be chosen for the centroidal curve.

A local cross-sectional reference system may be defined by align-
ing the normal z axis with the oriented centroidal curve, and by em-
ploying as the first in-section axis, namely x, the projection onto the
cross-section plane of a given global v̂ vector, that is assumed to be not
parallel to the beam axis. The remaining in-section axis y is then de-
rived, in order to obtain a local Gxyz right-handed coordinate system,
whose unit vectors are ı̂, ȷ̂, k̂.

Such construction of the local reference system for the beam branch
is consistent with most the Finite Element (fe) codes.

If a thin walled profile is considered in place of a solid cross sec-
tion member – i.e., the section wall midplane is recognizable too (see
paragraph 2.1.1 below), then a curvilinear coordinate s may be defined
that spans the in-cross-section wall midplane. Such in-cross-section
wall midplane consists in a possibly multi-branched curve, which is
parametrically defined by a pair of x(s), y(s) functions, with s span-
ning the conventional [0, l] interval.

In the case material is homogeneous along the wall thickness, the
local thickness value t(s) is some relevance, along with a local through-
wall-thickness coordinate r ∈ [−t(s)/2,+t(s)/2].

Such s, r, in-section coordinates based on the profile wall may be
employed in place of their cartesian x, y counterparts, if favourable.

1This work by Enrico Bertocchi, orcid.org/0000-0001-7258-7961, is licensed
under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

2here, centroidal curve, centroidal line, centroidal axis, or simply beam axis are
treated as synonyms.
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1.2 Joints and angular points

Beam axis may be discontinuous at sudden body geometry changes; a
rigid body connection is ideally assumed to restrict the relative motion
of the proximal segments.

Such rigid joint modeling may be extended to more complex n-way
joints; if the joint finite stiffness is to be taken into account, it has to
be described through the entries of a rank 6(n − 1) symmetric square
matrix 3.

At joints and at the beam axis angular points the cylindrical bod-
ies obtained by sweeping the cross sections along the centroidal curve
branches do usually overlap, and in general they only loosely mimic
the actual deformable body geometry.

The results obtained through the local application of the elemen-
tary beam theory are of a problematic nature; they may at most be
employed to scale the triaxial local stress/strain fields4 that are evalu-
ated resorting to more complex modelings.

1.3 Cross-sectional resultants for the spatial
beam

The beam may be notionally split at any point along the axis, thus
obtaining two facing cross sections, whose interaction is limited to three
components of interfacial stresses, namely the axial normal stress σz
and the two shear components τyz, τzx.

Three force resultant components may be defined by integration
along the cross section area, namely the axial (normal) force, the y-

3i.e., joint stiffness is unfortunately not a scalar value.
4The peak stress values obtained through the elementary beam theory may be

profitably employed as nominal stresses within the stress concentration effect frame-
work.
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and the x- oriented shear forces, respectively defined as

N =

∫

A
σzzdA

Qy =

∫

A
τyzdA

Qx =

∫

A
τzxdA

Three moment resultant components may be similarly defined, namely
the x- and y- oriented bending moments, and the torsional moment.
However, if the centroid is the preferred fulcrum for evaluating the
bending moments, the below discussed C shear center is employed for
evaluating the torsional moment; the two points might coincide, e.g. if
the cross section is twice symmetric, but they are distinct in general.
We hence define

Mx ≡M(G,x) =

∫

A
σzydA

My ≡M(G,y) = −
∫

A
σzxdA

Mt ≡M(C,z) =

∫

A
[τyz(x− xC)− τzx(y − yC)] dA

The applied vector associated to the normal force component (G,Nk̂)
is located at the section centroid , whereas the shear force (C,Qxı̂+Qy ȷ̂)
is supposed to act at the shear center; such convention decouples the
energy contribution of force and moment components for the straight
beam.

Common alternative names for such resultants are component of
internal action, (beam) generalized stress components etc.; they may
also be interpreted as the reactions of an internal clamp constraint
that joins the upstream and downstream portions of the structure,
notionally severed at the cross section under scrutiny.

Most of the sign rules for the resultant force and moment compo-
nents introduced for the plane problem lose their significance in the
spatial realm.

The following convention is proposed for the few cases in which a
sign characterization for the stress resultant components is required,
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Mt > 0

Figure 1.1: Right helix deformation of a cylinder subject to a conven-
tionally positive torsional moment.

which originates from the definition of the local reference system, which
in turn derives from the oriented nature of the beam branch, and from
the v̂ orientation vector, as discussed above; such rule is widely em-
ployed by FE codes.

Let’s consider to the beam segment of Fig. 1.2 (a) and (b): pos-
itive resultant components adopt the direction of the associated local
axis at the beam segment end that shows an outward-oriented local z
axis; at beam segment ends characterized by an inward-oriented local
z axis, the same positive stress resultant components are opposite to
the respective local axes.

According to such a rule, axial load is positive if tractive, and the
torsional moment is positive if deflects into a right helix a line traced
parallel to the axis on the undeformed profile, see Fig. 1.1. No intuitive
formulations are however available for the bending moment and shear
components.

Cross section resultants may be obtained, based on equilibrium for
a statically determinate structure. The ordinary procedure consists in

� notionally splitting the structure at the cross section whose re-
sultants are under scrutiny;

� isolating a portion of the structure that ends at the cut, whose
locally applied loads are all known; the structure has to be pre-
liminarily solved for the all the constraint reactions that act on
the isolated portion;

� setting the equilibrium equations for the isolated substructure,
according to which the cross-sectional resultants are in equilib-
rium with all the loads locally applied to the isolated portion.
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Figure 1.2: Stress resultants for the beam segment and the associ-
ated sign convention; for the sake of readability, symmetric and skew-
symmetric components are split apart in Figure. Please remind that –
even if visually applied at notable locations – the moment components
have no definite application point within the cross section.

1.4 A worked example

The present paragraph is devoted to the evaluation of the stress resul-
tants along the BD beam segment5 of the simple structure of Figure
1.3c, which mimics from within the spatial beam framework boundaries
the deformable body of Figure 1.3a.

The assumed distribution for the shear stress components τzx and
τyz along the C-section thin wall, which is derived from a generalized
application of the Jourawsky shear theory, locates its resultants in a
shear center C which is external to the cross section convex envelope,
as shown in Fig. 1.3b.

The shear center locus is represented in Fig. 1.3c as a dotted line,
wherever distinct from the centroidal line.

The l distance from the B corner parametrically pinpoints a section
along the BD segment, in correspondence of which the stress resultant
components are evaluated.

5The more straightforward treatise of the AB segment is left to the reader; results
will be here reported for discussion.
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Figure 1.3: A planar beam structure, loaded both in-plane and out of
plane. Please note that the plane the structure lies on is a symmetry
plane for the material and for the constraints; the applied load may
hence be decomposed into symmetric and skew-symmetric parts, lead-
ing to two uncoupled problems. A general spatial structure may be
derived e.g. by turning the C-profile 90◦ on its axis.
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The structure is then notionally partitioned in two substructures,
and the portion spanning from the section under scrutiny to the free
end is elected for further equilibrium analysis. Equilibrium equations
for the other portion would involve the preliminary evaluation of the
six constraint reaction components at D, based on global equilibrium.

Figure 1.3d collects the loads applied to such isolated substructure,
including the six components of internal action at the section under
scrutiny; the following equilibrium equations are set:

� translational equilibrium along the local x axis, namely

tx : + F +Qx = 0;

� translational equilibrium along the local y axis, namely

ty : +Qy = 0;

� translational equilibrium along the local z axis, namely

tz : −R+N = 0;

� rotational equilibrium with respect to the centroidal, x-aligned
axis, namely

rGx : +Rb+Mx = 0;

.

� rotational equilibrium with respect to the centroidal, y-aligned
axis, namely

rGy : − Fl +My = 0;

.

� rotational equilibrium with respect to z-aligned axis passing through
the shear center, namely

rCz : + Fa+Mt = 0;

from which the stress resultants may be trivially obtained.
The meditated choice for the rotational equilibrium axis makes the

arm of the possibly unknown axial and shear forces vanish, thus de-
coupling the equations.
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Figure 1.4: Projected views useful for discussing the isolated substruc-
ture rotational equilibrium. TODO.
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Also, it is suggested to analyze the contributions to the rotational
equilibrium with respect to a given axis by resorting to a projected
view of the isolated substructure in which such axis is aligned with the
line of sight6, see Figure 1.4; the information lost in the projection are
in fact of null relevance for the rotational equilibrium under scrutiny.

Figure 1.3e depicts the equilibrium state of the isolated substruc-
ture, and the visual comparison with its 1.3d counterpart offers an
overview for the components of internal action.

Even if the described procedure is of general application within
the spatial beam realm, the simple structure discussed exhibits elastic
domain symmetry with respect to the plane the two centroidal seg-
ments lie on, a non-general property this, which is also respected by
the specific constraints.

Such a peculiarity, along with the assumed linearity of the structure
response, allows for the decomposition of the problem into a symmetric
part, and into a skew-symmetric part. The symmetric portion of the
applied load is embodied by the R force, whereas the skew-symmetric
load portion is embodied by F .

Abetted by the fortunate orientation of the local axes7 the three
N,Qy,Mx in-plane resultants are produced by R alone, wherease the
three Qx,My,Mt out-of-plane resultants are induced by F alone. In-
plane (out-of-plane) resultants are in fact symmetric (skew-symmetric)
with respect to the plane the beam branches lies on, and the two sym-
metric and skew-symmetric parts of the problem are uncoupled.

Such property is useful in analyzing plane structures subject to
mixed in-plane and out-of-plane loads, as the one under scrutiny.

It is finally noted that a general spatial structure may be derived
from the proposed one e.g. by turning the C-profile 90◦ on its centroidal
axis, and thus losing the elastic body symmetry.

1.5 Final remarks

The stress resultants at each section depend on the location of its
center of axial elasticity and shear center, and on the orientation of the
local reference system; any variation of the cross section design which

6i.e. a view in which such axis is exiting (or entering) the plane of view
7one parallel and one orthogonal to the symmetry plane
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Figure 1.5: Notable points for a cross section. A reference point of
convenience O may be defined, useful in providing a provisional refer-
ence system for pinning the section geometry independently from the
possibly unknown elastic behavior, which defines instead the position
of the G center of axial elasticity (aka. centroid), and the C shear cen-
ter (aka. center of torsion). The latter, unlike the centroid, may fall
outside the convex envelope of the section.

preserves the named elements does not require a reevaluation of the
stress resultants.

In the case the actual cross section is still to be defined – and with
it the two centers – they may both provisionally assumed coincident
to an arbitrary located O point along the cross sections; the stress
resultants are then evaluated based on equilibrium in terms of the
three force resultants FOx,FOy,FOz – ideally applied at O, and the
three moment resultantsMOx,MOy,MOz, evaluated with respect to the
O-centered pivot axes. Whilst the O-based force resultants de facto
coincide with the Qx, Qy, N internal action components, respectively,
suitable transport moments are to be added to the O-based moment
components in order to retrieve the usual moment resultants, as in

Mx = MOx − FOz · yOG

My = MOy + FOz · xOG

Mt = MOz + FOx · yOC − FOy · xOC

where (xOG, yOG) and (xOC, yOC) are the coordinates of the two notable
centers, when eventually known, according to a Oxy reference system.

The center of axial elasticity may be determined as the weighted in-
tegral average of the material point coordinates along the cross section,
i.e.

{xOG, yOG} =

∫
AEz {xO, yO} dA∫

AEzdA
(1.1)
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where the weight consists in the pointwise axial elastic modulus Ez
(vs. the density ρ as for the center of gravity, or just the unity when
the aforementioned properties are uniform along the section), which is
defined as the

Ez =
σz
ϵz

ratio between an applied axial stress σz and the resulting axial strain
ϵz, in the absence of further stress components (uniaxial stress state,
as along the gauge length of the customary tensile test specimen).
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Figure 1.6: An overview of symmetrical and skew-symmetrical (gener-
alized) loading and displacements.

1.6 Symmetry and skew-symmetry conditions

Symmetric and skew-symmetric loading conditions are mostly rele-
vant for linearly-behaving systems; a nonlinear system may develop
an asymmetric response to symmetric loading (e.g. column buckling).

Figure 1.6 collects symmetrical and skew-symmetrical pairs of vec-
tors and moment vectors (moments); those (generalized) vectors are
applied at symmetric points in space with respect to the reference
plane. Vectors which are either normal or parallel to the plane are
considered, that may embody the same named components of a gener-
ally oriented vector.

It may be observed that the symmetric/skew-symmetric condition
for otherwise analogous pairs swaps in moving from vectors to moment
vectors, and from the orthogonal to the parallel orientation.

The pair members may be moved towards the reference plane up
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to a vanishing distance ϵ; for null ϵ both the point and the image lie on
the plane, and they coincide. In the case different (in particular, op-
posite and nonzero) vectors are associated to the two coincident pair
members, the physical field that such vectors are assumed to repre-
sent (displacements, applied forces, etc.) is not single-valued at the
reference plane; such condition deserves an attentive rationalization.

Vector and moment pairs in Figure 1.6 may embody, depending on
the context, displaments (denoted as u), rotations (θ), forces (F ) and
moments (M); the latters may be both related to internal and external
actions; in the following, the feasibility of nonzero magnitude pairs is
discussed as the members approach the reference plane (ϵ→ 0).

The (generalized) displacement components decorated with the ∗
marker may induce material discontinuity at points laying on the [skew-
]symmetry plane, if nonzero. Except for specific cases in which the
discontinuity is expected – e.g. or notionally infinitesimal openings at
the symmetry plane – they have to be constrained to zero at those
points, thus introducing the so-called [skew-]symmetry constraints.

When an halved portion of the structure is modeled in place of the
whole, since the response is expected to be [skew-]symmetric, these
constraints act in place of the portion of the structure that is omitted
from our model, and their reactions may be interpreted as internal
action components at the coupling interface between the two halves.

In case of symmetry, a constraint equivalent to a planar joint is
to be applied at points laying on the symmetry plane for ensuring
displacement/rotation continuity between the modeled portion of the
structure, and its image. In case of skew-symmetry, a constraint equiv-
alent to a doweled sphere - slotted cylinder joint (see Figure 1.6), where
the guide axis is orthogonal to the skew-symmetry plane, is applied at
the points belonging to the intersection between the deformable body
and the plane.

The ⋄ internal action components are null at points pertaining
to the [skew-]symmetry plane, since they would otherwise violate the
action-reaction law. The complementary † internal action components
are generally nonzero at the [skew-]symmetry plane.

The † external action components are not allowed at points along
the [skew-]symmetry plane; instead, the complementary ⋄ generalized
force components are allowed, if they are due to locally applied external
actions.
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Figure 1.7: On the left, the doweled sphere - slotted cylinder joint,
which is associated to the skew-symmetry constraint. On the right, an
actual mechanical construction, the tripod joint.

In the case of a symmetric structure, generally asymmetric applied
loads and imposed deflections may be decomposed in a symmetric part
and in a skew-symmetric part; the problem may be solved by employing
a half structure model for both the loadcases; the results may finally
be superposed since the system is assumed linear.

1.7 Periodicity conditions

TODO, if required.
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1.8 Axial load and uniform bending

It is preliminarily noted that the elementary extensional-flexural solu-
tion is exact with respect to the Theory of Elasticity if the following
conditions hold:

� beam constant section;

� beam rectilinear axis;

� absence of locally applied loads;

� absence of shear resultants8 (i.e. constant bending moments);

� principal material directions of orthotropy are uniform along the
section, and one of them is aligned with the beam axis;

� the ν31 and the ν32 Poisson’s ratios9 are constant along the sec-
tion, where 3 means the principal direction of orthotropy aligned
with the axis. Please note that Eiνji = Ejνij , and hence νji ̸= νij
for a generally orthotropic material.

Most of the above conditions are in fact violated in many textbook
structural calculations, thus suggesting that the elementary beam the-
ory is robust enough to be adapted to practical applications, i.e. limited
error is expected if some laxity is used in circumscribing its scope10.

The extensional-flexural solution builds on the basis of the following
simplifying assumptions:

� the in-plane11 stress components σx, σy, τxy are null;

� the out-of-plane shear stresses τyz, τzx are also null;

8A locally pure shear solution may be in fact superposed; such solution may
however not be available for a general cross section.

9We recall that νij is the Poisson’s ratio that corresponds to a contraction in
direction j, being a unitary extension applied in direction i in a manner that the
elastic body is subject to a uniaxial stress state.

10Measures for both the error and the violation have to be supplied first in order
to quantify the approximation.

11Both the in-plane and the out-of-plane expressions for the characterization of
the stress/strain components refer to the cross sectional plane.
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� the axial elongation ϵz linearly varies along the cross section,
namely

ϵz = a+ bx+ cy (1.2)

or, equivalently12, each cross section is assumed to remain planar
in the deformed configuration.

The three general constants a, b and c possess a physical meaning;
in particular a represents the axial elongation e as measured at the
centroid13, c represents the 1/ρx curvature14 whereas b represent the
1/ρy curvature, apart from its sign.

Figure 1.8 (b) justifies the equality relation c = 1/ρx; the beam
axial fibers with a ∆z initial length are elongated by the curvature up
to a ∆θ (ρx + y) deformed length, where ∆θρx equates ∆z based on
the length of the unextended fibre at the centroid. By evaluating the
axial strain value for a general fiber, it follows that ϵz = 1/ρx y.

In addition, Figure 1.8 (b) relates the 1/ρx curvature to the dis-
placement component in the local y direction, namely v, and to the
section rotation angle with respect to the local x axis, namely θ, thus
obtaining

dθ

dz
=

1

ρx
,

dv

dz
= −θ + [gy] ,

d2v

dz2
= − 1

ρx
(1.3)

For completeness, the influence of a possibly nonzero gy shear deforma-
tion contribution, see Figure 1.8 (c), is added as a bracketed term, even
if such contribution is assumed zero in the context of this paragraph.

Following analogous considerations, see 1.8 (d)-(f), we may simi-
larly obtain

dϕ

dz
=

1

ρy
,

du

dz
= +ϕ + [gx] ,

d2u

dz2
= +

1

ρy
(1.4)

where ϕ is the cross section rotation about the local y axis, and u is
the x displacement component.

12The axial, out-of-plane displacement ∆w =
∫
∆l

ϵzdz = ∆l (a+ bx+ cy) ac-
cumulated between two contiguous cross sections with an ∆l initial distance, is
consistent with that of a relative rigid body motion.

13or, equivalently, the average elongation along the section, in an integral sense.
14namely the inverse of the beam curvature radii as observed with a line of sight

aligned with the x axis. Curvature is assumed positive if the associated θ section
rotation grows with increasing z, i.e. dθ/dz > 0.
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ρy
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ϕ
ϕ+∆ϕ

∆ϕ
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(d) (e)

ϕ
ϕ+∆ϕ

(f)
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x, u(z)

y, v(z)

(c)

θ
θ +∆θ

gy

Figure 1.8: A differential fibre elongation proportional to the y coor-
dinate induces a curvature 1/ρx on the normal plane with respect to
the x axis, and a growth of the θ rotation in z, as in (b) with respect
to (a). A differential fibre contraction proportional to the x coordinate
induces a curvature 1/ρy on the normal plane with respect to the y
axis, and a growth of the ϕ rotation in z, as in (e) with respect to (d).
In (c) and (f), the further card-deck-like deformation associated to the
gy, gx shear deflections, respectively, is represented.
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y
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Mx

σzdAx
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G

s∆z

y
My

Mxx

Figure 1.9: Positive x and y bending moment components adopt the
same direction of the associated local axes at the beam segment end
showing an outward-oriented arclength coordinate axis; at beam seg-
ment ends characterized by an inward-oriented local z axis, the same
positive bending moment components are locally counter-oriented to
the respective axes.

According to the assumptions in the preamble, a uniaxial stress
state is assumed, where the only nonzero σz stress component may be
determined as

σz = Ezϵz; ϵz = e− 1

ρy
x+

1

ρx
y (1.5)

Stress resultants may easily be evaluated based on Fig. 1.9 as

N =

∫∫

A
EzϵzdA = EAe (1.6)

Mx =

∫∫

A
EzϵzydA = EJxx

1

ρx
− EJxy

1

ρy
(1.7)

My = −
∫∫

A
EzϵzxdA = −EJxy

1

ρx
+ EJyy

1

ρy
(1.8)
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where the combined material/cross-section stiffness moduli

EA =

∫∫

A
Ez(x, y) dA (1.9)

EJxx =

∫∫

A
Ez(x, y)yy dA (1.10)

EJxy =

∫∫

A
Ez(x, y)yx dA (1.11)

EJyy =

∫∫

A
Ez(x, y)xx dA (1.12)

may also be rationalized as the cross section area and moment of in-
ertia, respectively, multiplied by a suitably averaged Young modulus,
evaluated in the axial direction.

An equivalent form for Eqns. 1.7 and 1.8 is

[
Mx

My

]
=

[
EJxx −EJxy
−EJxy EJyy

]

︸ ︷︷ ︸
[EJ ]

[
1
ρx
1
ρy

]
(1.13)

from which the beam flexural stiffness [EJ ] matrix may be derived.
Those moduli simplify to their usual EzA,EzJ∗∗ analogues, where

the influence of the material and of the geometry are separated if the
former is homogeneous along the beam cross section.

From Eqn. 1.6 we obtain

e =
N

EA
. (1.14)

By concurrently solving Eqns. 1.7 and 1.8 with respect to the 1/ρx
and 1/ρy curvatures, we obtain

1

ρx
=
MxEJyy +MyEJxy

EJxxEJyy − EJ
2
xy

(1.15)

1

ρy
=
MxEJxy +MyEJxx

EJxxEJyy − EJ
2
xy

(1.16)

or, equivalently [
1
ρx
1
ρy

]
= [EJ ]

−1
[
Mx

My

]
(1.17)
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where

[EJ ]
−1

=
1

EJxxEJyy − EJ
2
xy

[
EJyy EJxy
EJxy EJxx

]

is the beam flexural compliance matrix. The equivalent curvature

1

ρeq
=

√
1

ρ2x
+

1

ρ2y
, (1.18)

which is defined as the euclidean norm of the two curvature compo-
nents, is also the inverse of the curvature radius as measured by an
observer whose line of sight is aligned with the so called neutral axis,
i.e. the ϵz = 0 line.

Axial strain and stress components may then be obtained for any
cross section point by substituting the above calculated generalized
strain components e, 1/ρx and 1/ρy holding for the extensional-flexural
beam into Eqn. 1.5, thus obtaining

σz = Ezϵz; ϵz =
[
y −x

]
[EJ ]

−1
[
Mx

My

]
+

1

EA
N (1.19)

The peak axial strain is obtained at points farther from neutral axis
of the stretched section; such neutral axis may be graphically defined
as follows:

� the coordinate pair

(xN , yN ) ≡ eρ2eq

(
1

ρy
,− 1

ρx

)
;

with ρeq from 1.18, defines its nearest pass-through point with
respect to the G centroid; the two points coincide in the case
e = 0.

� its orientation is defined by the unit vector

n̂∥ = ρeq

(
1

ρx
,
1

ρy

)
,

whereas the direction

n̂⊥ = ρeq

(
− 1

ρy
,
1

ρx

)
,

is orthogonal to the neutral axis, and oriented towards growing
axial elongations.
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G

n̂⊥

n̂∥

neutral axis, ϵz = 0

N

P

ϵz

d⊥

min(d⊥)

ρeq
1

max(d⊥)

ϵz = max(d⊥)
ρeq

ϵz = min(d⊥)
ρeq

d⊥ = ⟨n̂⊥, (x− xN , y − yN )⟩

ϵz at P

Figure 1.10: Graphical construction for retrieving the extremal strain
values given an N ≡ (xN , yN ) point along the neutral axis, two n̂∥ and
n̂⊥ unit vectors that are parallel and normal to neutral axis, respec-
tively , and the ρeq curvature radius to retrieve strains from the d⊥
projected distance measurements.

The cross section projection on on a generic n̂⊥-oriented line defines
a segment whose ends are extremal with respect to the axial strain,
since the axial strain may in fact be expressed – in the case of nonzero
bending moment 15 – as

ϵz =
1

ρeq
⟨n̂⊥, (x− xN , y − yN )⟩︸ ︷︷ ︸

d⊥

=
1

ρeq
d⊥ (1.20)

where d⊥ is the signed distance of the material point from the neutral
axis.

The graphical construction for retrieving the extremal strain values
along the cross section is shown in Figure 1.10.

If the bending moment vector M⃗f = (Mx,My) is imposed to be
collinear to the neutral axis direction n̂∥, and hence – in turn – to the
curvature component vector, we have

[
Mx

My

]
= ζn̂∥ = λ

[
1
ρx
1
ρy

]
(1.21)

15ϵz = e otherwise
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by resorting to the Eqn. 1.13, the following eigenpair problem is defined

[
Mx

My

]
=

[
EJxx −EJxy
−EJxy EJyy

]

︸ ︷︷ ︸
[EJ ]

[
1
ρx
1
ρy

]
= λ

[
1
ρx
1
ρy

]
(1.22)

which leads to the definition of the principal directions for the cross
sectional bending stiffness. In particolar, the (normalized) eigenvectors
of the [EJ ] matrix define the two principal bending stiffness directions

1̂ =

[
1x
1y

]
, 2̂ =

[
2x
2y

]
,

and the associated EJ11, EJ22 eigenvalues constitute the associated
bending stiffness moduli. Due to the property of the eigendecomposi-
tion with respect to the inverse, from

[EJ ] =

[
1x 2x
1y 2y

] [
EJ11 0

0 EJ22

] [
1x 1y
2x 2y

]
(1.23)

we have that

[EJ ]−1 =

[
1x 2x
1y 2y

] [ 1
EJ11

0

0 1
EJ22

] [
1x 1y
2x 2y

]
, (1.24)

which leads to the following alternative expression for the 1.15, 1.16
[

1
ρx
1
ρy

]
=

[
1x 2x
1y 2y

] [ 1
EJ11

0

0 1
EJ22

] [
1x 1y
2x 2y

] [
Mx

My

]

︸ ︷︷ ︸
I︸ ︷︷ ︸

II︸ ︷︷ ︸
III

(1.25)

where the sequence of matrix-vector multiplication may be rationalized
as follows:

� I leads to the (M1,M2) bending moment components with respect
to the principal (with respect to bending) reference system 12;

� II scales the latter according to the two flexural compliance fac-
tors 1/EJ11 and 1/EJ22 in order to derive the associated, un-
coupled, curvatures components;
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� III finally translates those curvatures back to the original xy
cartesian pair.
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1.9 Stresses due to the shear cross section re-
sultants, and torsion

In the presence of nonzero shear resultants, the bending moment ex-
hibits a linear variation with the axial coordinate z in a straight beam.
Based on the beam segment equilibrium we have

Qy =
dMx

dz
, Qx = −dMy

dz
, (1.26)

as rationalized in Fig. 1.15, with dz → 0 and Mx,My differentiable
with respect to z.

The linear variation of the bending-induced curvature in z causes
a likewise linear variation of the pointwise axial strain; stress variation
is also linear in the case of constant Ez longitudinal elastic modulus.

In particular, the differentiation with respect to z of σz as espressed
in Eqn. 1.19 returns

dσz
dz

= Ez
[
y −x

]
[EJ ]

−1
[
Qy
−Qx

]
(1.27)

since its Ez, [EJ ] terms are constant with respect to z; the bending
moment derivatives are here expressed in terms of the shear resultants,
as in Eqns. 1.26. Alternatively, we can write after some rearrangement

dσz
dz

= Ez
[
x y

] [EJ ]

det
(
[EJ ]

)
[
Qx
Qy

]
. (1.28)

Figure 1.11 rationalizes the axial equilibrium for an elementary vol-
ume of material; we have

dτzx
dx

+
dτyz
dy

+
dσz
dz

+ qz = 0 (1.29)

where, for the specific case, the distributed volumetric load qz is na-
tively zero.

It clearly emerges from such relation that the shear stresses τzx, τyz,
that were null within the uniform bending framework, are non-uniform
along the section – and hence not constantly zero – in the presence of
shear resultants.
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(
σz|P + ∂σz
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P ≡ (x, y, z)

dP ≡ (dx, dy,dz)

qzdxdydz
P + dP

Figure 1.11: Equilibrium conditions with respect to the axial z transla-
tion for the infinitesimal volume extracted from the beam. In the case
under scrutiny, the distributed volume action qz is null.

An extensive treatise on the pointwise solution of a) the equilibrium
equations 1.29, once coupled with b) the compatibility conditions and
with c) the the material elastic response, is beyond the scope of the
present contribution, although it has been derived for selected cross
sections in e.g. [1].

However, some notes are presented in the present paragraph, that
should provide a quick overview of the topic.

First, an artifice is introduced to analyze the shear straining in
purity, i.e. to dissociate it from the nonuniform flexure, whose contri-
bution may be latter superposed. From Eq. 1.29 we may observe that
the dσz

dz axial stress variation term is formally interchangeable with the
qz distributed volumetric load terms; in particular, a q̄z defined as the
Eq. 1.28 RHS, i.e.

q̄z = Ez
[
x y

] [EJ ]

det
(
[EJ ]

)
[
Qx
Qy

]
. (1.30)

may produce a shear stress/strain field analogous to that induced by
transverse loads, but in the absence of actual flexure.

By accumulating those the q̄z contributions along the the cross
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ℓ ℓ
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Qyℓ
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ℓ ℓ

Qy
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(b)

cx = Qy
y q̄z

c =
∫
A
q̄zydA

≡

Mx = 0

Figure 1.12: Transverse loads at a beam segment endpoints, and the
necessary equilibrating moments: in (a), a pure shear condition is ob-
tained at the midspan cross section, whereas in (b) such a condition is
extended to the entire segment, by uniformly spreading the endpoint
moments.

section, we obtain two components of moment lineic density16 resultant

cx =

∫

A
q̄zydA = Qy, cy = −

∫

A
q̄zxdA = −Qx,

which equate in magnitude the shear components, see Fig. 1.12b, and
a null force resultant ∫

A
q̄zdA = 0.

By considering an unbounded beam subject to such q̄z distributed
load, with equilibrating Qx, Qy loads applied at both the infinitely
far end faces, in correspondence of the shear center, holding a few

16i.e. moment per unit beam length
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futher hypotheses17 each cross sectional plane is a skew-symmetry
plane for the prismatic solid and for the applied loads, leading to a
skew-symmetric problem for which a translational self-similarity also
holds in varying the cross section under scrutiny.

Since analogous properties are observed in the same infinite beam
subject to torsion, we may consider an additionalMt torque applied at
both the extremes, and hence combine the two pure shear and torsional
skew-symmetric18 loadcases in a single treatise.

The classical solution for the rectilinear beam subject to pure shear
and torsion predicts a displacement field that is composed by the su-
perposition of i) a rigid, in-plane cross section translation due to shear,
in card-deck like sliding fashion, whose axial rates gx, gy are uniform
ii) a rigid, in-plane19 cross section rotation about the translated shear
center, named twist, whose axial rate ψ′ is uniform, and iii) an out-of-
plane warping displacement w(x, y) that is uniform in the axial direc-
tion, whereas it varies within the section; such warping displacement
is zero only in the case of axisymmetric sections (e.g. solid and hollow
circular cross sections) subject to torsion alone.

The resulting displacement field for the prismatic bar subject to
shear and torsion may hence be cast as

u =
(
gx − (y − yC)ψ

′) z
v =

(
gy + (x− xC)ψ

′) z
w = w̄(x, y)

(1.31)

Such a displacement field is represented in Figs. 1.18a and 1.18b.
Due to the rigid nature of the in-plane displacements, the in-plane

strain components ϵx, ϵy, ϵxy are zero, along with the ϵz axial strain
component, due to the axially constant nature of the warping displace-
ment. The in-plane stress components σx, σy, τxy, and the normal
stress σz are also zero, based on the associated strain components, and
the material elastic symmetry.

The residual out-of-plane (oop) shear strain components may then

17if the cross section is constant and the material exhibits a symmetric elastic
behavior (i.e. monoclinic) with respect to the cross-sectional plane

18with respect to the cross sectional plane
19the rotation vector is actually normal to the cross sectional plane; the in-plane

motion characterization refers to the associated displacement field.
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Figure 1.13: In (a) and (b), the u, v deflection induced by the gx, gy, ψ
′

generalized strain components, and in (c) the associated γzx, γzy shear
strain field, which may credibly produce a substantially aligned τzx, τzy
shear stress field that violates the free lateral surface condition. In
(d), the warping displacement field for a purely torsional (no shear)
loadcase.
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be derived from the displacement field as

γzx = gx − (y − yC)ψ
′

︸ ︷︷ ︸
∂u
∂z

+
∂w̄

∂x
, γzy = gy + (x− xC)ψ

′
︸ ︷︷ ︸

∂v
∂z

+
∂w̄

∂y
(1.32)

and, in turn, oop shear stress components may be derived from the
material transverse shear constitutive law, namely

[
τzx
τzy

]
=

[
Gzx Hzxzy

Hzxzy Gzy

]

︸ ︷︷ ︸
G z∗

[
γzx
γzy

]
(1.33)

where the coupling term Hzxzy is null if x, y are principal directions of
orthotropy, and in the case of isotropic materials where we also have
that both Gzx, Gzy coincide with the material shear modulus G =
E

2(1+ν) .
In order to respect the stress-free condition of the lateral surface,

the normal component of the (τzx, τzy) vector must vanish at the cross-
section shape boundary, i.e.

⟨n̂, (τzx, τzy)⟩ = 0 (x, y) ∈ bd(A) (1.34)

where n̂ is the locally normal unit vector.
The

(
∂u
∂z ,

∂v
∂z

)
contributions of the rigid card-deck-like roto-translation

to the oop strain field – i.e. the oop strain field in the supposed absence
of warping motion – is shown in Fig. 1.18c, and it is clearly far from
being aligned with the cross-section shape border; even if the (τzx, τzy)
oop shear stress field is strictly aligned to its strain counterpart only
in the case of isotropic materials, the misalignment between the two
fields is limited20 . Hence, the warping contribution to the oop shear
strain and – in turn – stress fields is fundamental in reorienting the
latter in order to make Eq. 1.34 hold.

20In the general case, the angle between the two oop stress/strain vectors is

bounded by a limit 0 ≤ arccos
2
√
η

1+η
< π

2
aperture, where 0 < η ≤ 1 is the ratio

between the lowest and the highest eigenvalues of the G z∗ oop shear constitutive
matrix. In the allegedly extremal case of a [±45F]n twill high modulus CFRP lam-
inated beam, where the in-ply shear modulus is much higher than the transverse
counterpart (η ≈ 0.08), a limit angle of ≈ 58.5◦ is obtained.
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z

{x̆, y̆}

C

{
θr, ϕ̃r

}
= {gzy, gzx}

Figure 1.14: FIXME

By further superposing the rotation depicted in Fig. 1.14, namely

{θr, ϕr} = {gzy,−gzx}
{ur, vr} = −{gzx, gzy} z

wr = gzx(x− xC) + gzy(y − yC)

we realign the C shear centers with their original position, thus obtain-
ing

u =
(
gx − (y − yC)ψ

′) z + ur = − (y − yC)ψ
′z

v =
(
gy + (x− xC)ψ

′) z + vr = +(x− xC)ψ
′z

w = w̄ + wr

(1.35)

and reducing the whole in-plane (ip) motion to a pure, progressive
rotation around the shear center line, at the cost of an added contri-
bution to w. Such a displacement field will be later obtained in the fe
modeling of the profile segment in order to retrieve the beam elastic
properties.

Also, by differentiating the Eq. 1.35 displacement field, we obtain
an oop shear strain formulation

γzx = − (y − yC)ψ
′

︸ ︷︷ ︸
∂u
∂z

+
∂w̄

∂x
, γzy = +(x− xC)ψ

′
︸ ︷︷ ︸

∂v
∂z

+
∂w̄

∂y
(1.36)

lacking of the gzx, gzy unknown terms.
By substituting the Eq. 1.36 strains withing Eq. 1.33 we obtain

oop the shear stresses which may in turn be substituted within the

dτzx
dx

+
dτyz
dy

+ q̄z = 0 (1.37)
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equilibrium equation along the cross-section domain, and within the
Eq. 1.34 boundary condition, we obtain an anisotropic, inhomogeneous
Poisson problem21 in the w̄(x, y) unknown function.

Then, the problem may be split in a pure shear subproblem, with
ψ′ = 0, which is solved first, where the two Qx, Qy shear resultants
within the q̄z term act as load parameters, the (xC , yC) shear center
coordinates are obtained from the (τzx, τzy) resultant lines of action,
and the {χx, χy, χxy}/GA terms are obtained from the strain energy
induced by three different shear load combinations (e.g. Qx > 0 alone,
Qy > 0 alone, combined Qx = Qy > 0).

A second, torsional only subproblem is then approached by putting
Qx = Qy = 0, and in turn q̄z = 0, and employing the ψ′ twist rate as
the load parameter. Once obtained the solution in terms of (τzx, τzy)
stresses, the torsional moment Mt may then be retrieved as their mo-
ment resultant.

21a second order partial differential equation, plus b.c.

35



G

dσz

D

dz

t A∗
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Mx + dMx

My + dMy

Qx

Qx

Qy
Qy

z dσz = 0

Figure 1.15: Equilibrium conditions for the isolated beam segment
portion. It is noted that the null σz variation locus, dσz = 0, does not
coincide with the bending neutral axis in general. Also, the depicted
linear variation of dσz with the D distance from such null dσz locus
does not hold in the case of non-uniform Ez modulus.

1.9.1 The Jourawsky approach and its extension for a
general section

The aforementioned axial equilibrium condition, whose treatise is cum-
bersome for the infinitesimal volume, may be more conveniently dealt
with if a finite portion of the beam segment is taken into account, as
in Figure 1.15.

A beam segment is considered whose axial extent is dz; the beam
cross section is partitioned based on a (possibly curve, see Fig. 1.16)
line that isolates an area portion A∗ – and the related beam segment
portion – for further scrutiny; axial equilibrium equation may then be
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τ̄zi τ̄zi

t tA∗ A∗

Figure 1.16: The curve employed for isolating the beam segment por-
tion defines the direction of the τzi components whose average value is
evaluated.

stated for the isolated beam segment portion as follows

τ̄zit =

∫

A∗

dσz
dz

dA, (1.38)

where

τ̄zi =
1

t

∫

t
τzidr (1.39)

is the average shear stress acting in the z direction along the cutting
surface; i is the (locally normal) inward direction with respect to such
a surface. Due to the reciprocal nature of the shear stresses, the same
τ̄zi shear stress acts along the cross sectional plane, and locally at the
cutting curve itself. These shear actions are assumed positive if inward
directed with respect to A∗.

The τ̄zit product is named shear flow, and may be evaluated along
a general cutting curve.

It is noted that, according to Eqn. 1.38, no information is pro-
vided with regard to a) the τzr shear stress that acts parallel to the
cutting curve, nor b) the pointwise variation of τzi with respect of
its average value τ̄zi. If the resorting to more cumbersome calculation
frameworks is not an option, those quantities are usually just neglected;
an informed choice for the cutting curve is thus critical for a reliable
application of the method.

In the simplified case of a) uniform material and b) local x, y axes
that are principal axes of inertia (i.e. Jxy = 0), the usual formula is
obtained

τ̄zit =

∫

A∗

(
yQy
Jxx

+
xQx
Jyy

)
dA =

ȳ∗A∗

Jxx
Qy +

x̄∗A∗

Jyy
Qx, (1.40)
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where ȳ∗A∗ and x̄∗A∗ are the first order area moments of the A∗ section
portion with respect to the x and y axes, respectively22.

1.9.2 Shear induced stresses in an open section, thin
walled beam

In the case of thin walled profiles, the integral along the isolated area in
Eqn. 1.38 may be performed with respect to the arclength coordinate
alone; the value the dσz/dz integrand assumes at the wall midplane is
supposed representative of its integral average along the wall thickness,
thus obtaining

τ̄zit = qzi =

∫ s

0

∫ t/2

−t/2

dσz
dz

drdς ≈
∫ s

0

dσz
dz

∣∣∣∣
r=0

tdς. (1.41)

Such assumed equivalence strictly holds for a) straight wall seg-
ments23 and b) a linear variation of the integrand along the wall, a
condition, the latter, that holds if the material properties are homoge-
neous with respect to the wall midplane24; in the more general case,
the error incurred by this approach vanishes with vanishing thickness
for what concerns assumption a), whereas if the material is inhomoge-
neous, through-thickness averaged Ēz, Ḡzi moduli may be employed in
place of their pointwise counterpart.

If a thin walled section segment is considered such that it is not
possible to infer that the interfacial shear stress is zero at at least
one of its extremities, a further term needs to be considered for the
equilibrium, thus obtaining

τ̄zi(s)t(s) = q(s) =

∫ s

a

dσz
dz

tdς + τ̄zi(a)t(a)︸ ︷︷ ︸
qA

. (1.42)

In the case of open thin walled profiles, however, such a choice for the
isolated section portion is suboptimal, unless the qA term is known.

22According to the employed notation, (x̄∗, ȳ∗) are the centre of gravity coordi-
nates for the A∗ area.

23i.e. the Jacobian of the (s, r) 7→ (x, y) mapping is constant with r.
24a linear dϵz/dz axial strain variation is in fact associated to the curvature vari-

ation in z, and not an axial stress variation;
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1.9.3 Shear induced stresses in an closed section, thin
walled beam

In the case of a closed thin walled, generally asymmetric section, the
search for a point along the wall at which the shear flow may be as-
sumed zero is normally not viable, and the employment of Eq. 1.42 in
place of the simpler Eq. 1.41 is unavoidable.

In this case, a parametric value for the τ̄iz shear stress is assumed
for a set of points along the cross section midcurve – one for each
elementary closed loop25 if the points are non-redundantly chosen26.

In the multicellular cross section example shown in Figure 1.17,
two elementary loops are detected; shear flows at the A, B points are
parametrically defined as τAtA and τBtB , respectively.

The τ(s) shear stress at each point along the profile wall may then
be determined based on Eqn. 1.42 as a function a) of the shear resultant
components Qx and Qy, and b) of the parametrically defined shear
stresses at the A,B points.

Due to the assumed linear response for the profile, superposition
principle may be employed in isolating the four elementary contribu-
tions to the shear stress flow along the section.

The first two elementary contributions f;Qx(s) and f;Qy(s) are re-
spectively due to the action alone of the x and y shear force compo-
nents, whose magnitudes Qu

x and Qu
y is assumed equal the product of

the stress unit (e.g. 1 MPa) and of the cross sectional area. Those
forces are assumed to act in the ideal absence of shear flow at points
where the latter is assumed as a parameter (points A and B in Figure
1.17).

Since the condition of zero shear flow is stress-compatible with an
opening in the closed section loop, the cross section may be idealized
as severed at the assumed shear flow points, and hence open. The
equilibrium-based solution procedure derived for the open thin-walled
section may hence be profitably applied.

A family of further elementary contributions, one for each of the
assumed shear stress points, may be derived by imposing zero para-

25i.e. a closed loop not enclosing any other closed loop.
26Redundancy may be pointed out by ideally cutting the cross section at these

points: if a monolithic open cross section is obtained, the point choice is not redun-
dant; if a portion of the section is completely isolated, and a loop remains closed,
the location of these points causes redundancy.
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≡ [1 stress unit ]

f;S1(s) f;S2(s) f;A(s) f;B(s)

Figure 1.17: Contributions to the τzi(s) shear stress along the profile
walls associated to a) a unit shear force component Qu

1 applied along
the first principal axis of inertia, whose magnitude equals the product
of the cross section area and the unit stress, b) an analogous shear
force component Qu

2 aligned with the second principal axis of inertia,
c) a unit shear stress τuA applied at the opposite fictitious cut surfaces
at A, and d) a unit shear stress τuB applied at the opposite fictitious
cut surfaces at B. Profile wall thickness is constant in the presented
example, thus producing a continuous shear stress diagram, whereas
continuity is rather aa unit shear stress τuA applied at the opposite
fictitious cut surfaces at a property of the shear flow.
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metric shear flow at all the points but the one under scrutiny, and in
the absence of externally applied shear resultants. The elastic problem
may be rationalized as an open – initially closed, then ideally severed
– thin walled profile, that is loaded by an internal constraint action
whose magnitude is unity in terms of stresses. Equilibrium considera-
tions reduce to the conservation of the shear flow due to the absence of
dσz/dz differential axial stress, as in the case of a closed profile under
torsion discussed below.

Figures 1.17 (a) and (b) show the shear stress contributions f;S1(s)
and f;S2(s) induced in the ideally opened (i.e. zero redundant shear
flows at the A,B points) multicellar profile by the first and the second
shear force components, respectively; due to the author distraction,
such figure refers to shear components aligned with the principal di-
rections of bending stiffness, and not to the usual x,y axes.

Figures 1.17 (c) and (d) show the shear stress contributions f;A(s)
and f;B(s) associated to unity values for the parametric shear flows at
the A, B segmentation points, respectively.

The cumulative shear stress distribution for the section in Figure
1.17 is

τ(s) =
Q1

A f;S1(s) +
Q2

A f;S2(s) + τAf;A(s) + τBf;B(s) (1.43)

where s is a suitable arclength coordinate.
The associated elastic potential energy may then be integrated over

a ∆z beam axial portion, thus obtaining

∆U =

∫

s

τ2

2Gsz
t∆zds (1.44)

According to the Castigliano second theorem, the ∆U derivative
with respect to the τ̄i assumed shear stress value at the i-th segmenta-
tion point equates the generalized displacement with respect to which
the internal constraint reaction works, i.e. the t∆zδ̄i integral of the
relative longitudinal displacement between the cut surfaces; we hence
have

∂∆U

∂τ̄i
= δ̄it∆z (1.45)

The δ̄i symbol refers to the average value along the t∆z area of
such axial relative displacement.
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Material continuity requires zero δ̄i value at each segmentation
point, thus defining a set of equations, one for each τ̄i unknown param-
eter, whose solution leads to the definition of the actual shear stress
distribution along the closed wall profile.
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Figure 1.18: TODO

1.9.4 Shear stresses due to the St. Venant torsion

FIXME
The classical solution for the rectilinear beam subject to uniform

torsion predicts a displacement field that is composed by the super-
position of i) a rigid, in-plane27 cross section rotation about the shear
centre, named twist, whose axial rate is uniform, and ii) an out-of-plane
warping displacement that is uniform in the axial direction, whereas
it varies within the section; such warping displacement is zero in the
case of axisymmetric sections only (e.g. solid and hollow circular cross
sections).

Due to the rigid nature of the in-plane displacements, the in-plane
strain components ϵx, ϵy, ϵxy are zero; the in-plane stress components

27the rotation vector is actually normal to the cross sectional plane; the in-plane
motion characterization refers to the associated displacement field.
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σx, σy, τxy, and the normal stress σz are also zero if z is a direction
of orthotropy for the material – as it is assumed in the following. The
motion is internally restricted only due to the nonzero out-of-plane
shear stresses τyz and τzx, that develop as an elastic reaction to the
associated strain components.

A more in-depth treatise of the topic involves the solution of an
plane, inhomogeneous Laplace partial differential equation with essen-
tial conditions imposed at the cross section boundary, which is beyond
the scope of the present contribution.

However, in the case of open- and closed- section, thin walled
beams, simplified solutions are available based on the assumptions that
a) the out-of-plane shear stresses are locally aligned to the wall midsur-
face - i.e. τzr = 0 leaving τzs as the only nonzero stress component28,
and b) the residual τzs shear component is either constant by moving
through the wall thickness (closed section case), or it linearly varies
with the through-thickness coordinate r.

FIXME

1.9.5 Solid section beam

TODO.

1.9.6 Closed section, single-celled thin walled beam

The τsz component is assumed uniform along the wall thickness, or,
equivalently, its deviation from the average value is neglected in calcu-
lations.

In the case the material is non-uniform across the thickness, the
γsz shear strain is assumed uniform, whereas the τsz varies with the
varying Gsz shear modulus.

In the absence of σz, the axial equilibrium of a portion of beam
segment dictates that the shear flow tτ remains constant along the
wall, i.e.

t1τ1 = t2τ2

as depicted in Figure 1.19.

28Here, the notation introduced in paragraph XXX for the thin walled section is
employed.
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Figure 1.19: Axial equilibrium for a portion of profile wall, in the case
of a closed, thin-walled profile subject to torsion.

By skipping some further interesting observations (TODO) we may
just introduce the Bredt formula for the cross-section torsional stiffness

Kt =
4A2

∮
1
t dl

(1.46)

which is valid for single-celled, closed thin wall sections.
The peak stress is located at thinnest point along the wall, and

equals

τmax =
Mt

2tminA
(1.47)

.

1.9.7 Closed section, multi-celled thin walled beam

TODO. However, a lower bound for the stiffness of the multi-celled
thin walled beam may be obtained by fictitiosly severing the inner
walls, thus obtaining a single cell defined by the outer wall alone.

An upper bound for the stiffness is obtained by assuming each
shared inner wall as shear-rigid, and then by summing the stiffnesses of
each elementary closed loop, as they constituted independent profiles.
The shear-rigid nature of the inner walls is enforced by neglecting their
contribution to the circuital integral at the Bredt formula denominator.
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1.9.8 Open section, thin walled beam

The shear strain component γzs is assumed linearly varying across the
thickness; if the Gsz shear modulus is assumed uniform, such linear
variation characterizes the τzs stress components too.

The average value along the thickness of the τzs stress component
is zero, as zero is the shear flow as defined in the previous paragraph.

For thin enough open sections of uniform and isotropic material we
have

KT ≈ 1

3

∫ l

0
t3(s)ds (1.48)

If the thin-walled cross section may be described as a sequence of
constant thickness wall segments, the simplified formula

KT ≈ 1

3

∑

i

lit
3
i (1.49)

is obtained where ti and li are respectively the length and the thickness
of each segment.

The peak value for the τzs stress component is observed in corre-
spondence to thickest wall section point and it equates

τmax =
Mttmax

KT
(1.50)

By applying the reported formulas to a rectangular section whose
span length is ten times the wall thickness, the torsional stiffness is
overestimated by slightly less than 7%; a similar relative error is re-
ported in terms of shear stress underestimation.

1.9.9 Torsional stiffening due to restrained warping at
profile ends: Vlasov torsion theory

As a pedagogical introduction to the restrained warping torsion, an
open, thin-walled I-section beam29 is considered where its ends are
both butt-welded to massive plates, see Fig. 1.20, that locally impede
the warping deformation at the base of the de Saint Venant torsion
theory.

29also named H-section, double-T, based on normalized profile codes, e.g. IPN,
IPE, or UC beams
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Figure 1.20: The problem under scrutiny.

Two opposite T torques are applied that induce an axial counter-
rotation 2rl of the beam extremities, and hence a twist deformation of
the profile, which is locally quantified through the ψ(z) section twist
angle, and whose average rate along the 2l overall span length is r.

Due to the skew-symmetric nature of the problem with respect to
the three xy, yz and zx planes, the cross sectional motion is limited to
a twist rotation about the z axis, which is centroidal with respect to
shear, plus the restrained warping out-of-plane displacement.

In Figure 1.21 the profile walls are ideally partitioned into a set
of limited width rectangular blades; the profile section rotation locally
induces at each blade section three distinct motions, i.e. a) a twist
rotation, b) a widthwise translation, and c) a transverse translation
with respect to the blade width.

The axial rate of the twist motion a) is at the base of the de St.
Venant torsional model for open thin walled sections, which covers it
exhaustively; conversely, the second order axial rate of the b) and c)
translations induce bending curvatures at the blades, whose contribu-
tion to the internal energy increases the profile stiffness in torsion with
respect to twist alone.

In particular, while the c) contribution acts along the blade bending
weak axis and it is usually neglected, the b) contribution is considerable
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Figure 1.21: Cross section partitioning into limited width blades, and
analysis of their twist/deflective motion.

and it constitutes the basis of the Vlasov restrained torsion theory
for thin walled profiles. Due to the mutual interaction occurring at
the blade flanks which are not free surfaces, the general treatise is
cumbersome.

Limiting our discussion to the Fig. 1.20 didactic example, according
to Fig. 1.21 the blades extracted from the central web undergo a purely
c) transverse deflection, and their contribution is neglected. The b)
widthwise relevant deflection occurs instead at the two x+, x− flanges,
which are treated as two independent, rectangular cross section beams,
thus effectively resembling the two profile assembly of the Par. 1.13
simplified ladder frame example.

In the unconstrained warping case, a reference Tref = GKtr torque
is produced, which is fully ascribable to the flange and web twisting.
Here, the GKt constant is the usual torsional stiffness for the profile,
with

G =
E

2(1− ν)
, Kt =

1

3

∫

ℓ
t3(s)ds =

(2b+ h) t3

3
.

As underlined in Fig. 1.22a, the two twisted flanges undergo a
further rigid body rotation θ̌ = rh

2 about the x axis, whose associated
axial displacement is incompatible with the end plate rigidity. As a
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Figure 1.22: In b), the skew-symmetric, S-shaped bending deflection of
the two flanges, as the profile undergoes to torsional twist; the τsz shear
stresses (uniform in z) are pointed out at the midspan cross section,
whereas the σz flexural stress distribution peak out at the restrained-
warping extremities. In a), the same overall twist is applied, under free
warping conditions; the transverse displacement of the flange extremi-
ties is absorbed by a mere rotation. In c) and d), the contribution to
the overall torsional moment due to the flange shear forces, TVla, and
of the wall twist reactions, TdSV, respectively.

.
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reaction, two opposite moments are expected to occur.
By considering the bending of the x+ flange alone30, the V flange

shear force is retrieved as the axial rate of the Mx flexural moment,

V =
dMx

dz
.

According to Fig. 1.22c, the contribution of the flange bending to the
profile torsional torque equates the shear force couple

TVla = hV = h
dMx

dz
;

based on the flange flexural compliance

Mx =
EJxx
ρx

= −EJxx
d2v

dz2
, EJxx =

Eb3t

12

we obtain

TVla = −hEJxx
d3v

dz3
,

where the v transverse displacement may in turn be determined as

v =
h

2
ψ,

where ψ is the local twist angle, see Fig. 1.21.
Such a contribution of the flange bending to the overall torsional

torque transmission may hence be expressed as a function of the (third
derivative of) twist angle as

TVla = −h
2

2
EJxx

d3ψ

dz3
= −ECw

d3ψ

dz3

where

ECw = EJxx
h2

2
=
Eb3th2

24

embodies the I-beam cross-sectional constant for the restrained warp-
ing torsion. Different expressions may be obtained for different cross-
sections.

30the x− flange behaves skew-symmetrically
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Besides that, the torsional moment transmitted according to the de
St. Venant torsion theory is

TdSV = GKt
dψ

dz
,

By dimensionally comparing the two ECw, GKt constants, a char-
acteristic length of the cross section with respect to the Vlasov (re-
strained warping) torsion theory may be defined as follows

d =

√
ECw
GKt

, ECw = d2GKt

Since the overall torsional torque is constant along the beam in the
absence of distributed twisting actions, the sum of its two TVla and
TdSV constituents remains stationary in z, thus obtaining

0 =
dTdSV
dz

+
dTVla

dz
= −ECw

d4ψ

dz4
+GKt

d2ψ

dz2

0 = −d2d
4ψ

dz4
+
d2ψ

dz2

which is a 4th-order differential equation in the ψ unknown function,
whose solutions take the general form

ψ(z) = C1 sinh
z

d
+ C2 cosh

z

d
+ C3

z

d
+ C4 (1.51)

where the Ci constants are defined based on the boundary conditions.
In the theory of restrained warping torsion, an auxiliary, higher

order resultant moment quantity named bimoment is introduced; in the
case of the pedagogical I-section example under scrutiny, the bimoment
appears as the product of the two flange bending moments Mx, times
their h distance, which acts as a further, higher order arm, i.e.

B =Mx · h
whereas in general it is defined based on the ECw constant and the
second rate of twist as in

B = −ECw
d2ψ

dz2
;

axial stresses along the cross section linearly scale with the above bi-
moment quantity, provided that the material behaves elastically.

Warping related boundary conditions may be stated as follows:
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� free warping: d2ψ
dz2

= 0, i.e. absence of bimoment, B = 0;

� no warping: dψ
dz = 0, i.e. absence of de St. Venant transmitted

moment, TdSV = 0;

whereas the customary boundary conditions

� imposed rotation, ψ = c;

� imposed overall torque, TdSV + TVla = C;

are defined as usual.
In the case under scrutiny, see Fig. 1.20, the even C2, C4 coefficients

of Eq. 1.51 are null by skew-symmetry, whereas the remaining odd
C1, C3 coefficients are obtained as

{C1, C3} = rl ·
{
−1, cosh

(
l
d

)}

l
d cosh

(
l
d

)
− sinh

(
l
d

) (1.52)

by imposing at both ends a given amount of twist and no warping, i.e.

ψ|z=l = rl,
dψ

dz

∣∣∣∣
z=l

= 0.

Relevant results are reported in Fig. 1.23, where the overall torque
and the isolated contribution of its constituents – sampled at the midspan
– are plotted as a function of the η ratio between the overall span length
2l and the characteristic length d. Due to normalization, such a Figure
encompasses the general case of an arbitrary cross-sectional shape and
a generally elastic material.

It clearly appears from the Fig. 1.23 that i) the stiffening effect
of the constrained warping at ends is extremely relevant, and ii) the
Vlasov thin wall bending is the preferential torque transmission mech-
anism, when the 2l overall span length is of same the order of the d
characteristic length, or lower (i.e. not η ≫ 1).

The classical de St. Venant torsion theory is only applicable when
the overall span length 2l becomes considerably greater than the char-
acteristic length d, i.e. η ≫ 1.

The analytical expression obtained for the stiffening factor due to
constrained warping at ends (this is a further interpretation for the
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Figure 1.23: Relevant results for the problem under scrutiny. The over-
all torque (“TVla + TdSV” labeled blue line) is plotted as a function of
the η ratio between the overall span length 2l and the characteristic
length d. The isolated contribution of its two constituents is sampled
at the midspan (“TVla, midspan” labeled red line, and “TdSV, midspan”
labeled green line ), and the GKtr reference torque proper of the un-
constrained warping case is added for comparison (purple line). The
ordinate axis is normalized with respect to the GKtr reference torque
proper of the unconstrained warping torsion.
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“TVla + TdSV” labeled blue curve in Fig. 1.23) is

TVla + TdSV
GKtr

=
η

η − 2 tanh
(η
2

) = S(η). (1.53)

Such a stiffening factor may usefully be employed to evaluate the
d characteristic length of a given, arbitrary profile cross section from,
e.g., FE simulations or experiments.

The torsional stiffness of a 2l̄ long specimen may in fact be evaluated
in both i) restrained warping at both ends conditions – ki value – and
ii) free warping conditions – kii value. Then, the measured ratio

S̄ =
ki
kii

may be compared with the ordinate values of the Fig. 1.23, “TVla +
TdSV” labeled, blue curve, thus obtaining the ratio between the 2l̄ spec-
imen length and the d̄ characteristic length as the associated abscissa.

Alternatively, the Newton iteration

ηi+1 = ηi +
S̄ − Si
S′i

, Si = S(ηi), S′i =
∂S

∂η

∣∣∣∣
η=ηi

converges to the η∗ solution when initialized with η0 = 1; then the d̄
characteristic length may be obtained as

d̄ =
2l̄

η∗
.

Such a d characteristic length for the Vlasov restrained torsion the-
ory is usually much greater than the a cross-section characteristic size
in the case of open thin-walled cross sections as the one under scrutiny,
thus leading to high S stiffening ratios even for apparently long (with
respect to a, but not to d) profiles; d is usually much smaller than a
in the case of closed thin-walled cross section, thus producing a sub-
stantial negligibility of the stiffening effect due to restrained warping
at ends.
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1.10 Castigliano’s second theorem and its ap-
plications

Castigliano’s second theorem may be employed for calculating deflec-
tions and rotations, and it states:

Once the strain energy of a linear elastic structure is ex-
pressed as a function of a set of generalized loads31 Qi , the
partial derivative of the strain energy with respect to each
generalized load supplies the generalized displacement32 qi
on which such a load performs work.

In equation form,

qi =
∂U

∂Qi

where U is the strain energy.
In case of elastically nonlinear structures, the second Castigliano

theorem may still be employed33, provided that the complementary
elastic strain energy U∗ is used in place of the strain energy U , see Fig.
1.24. The two energy terms coincide in linearly behaving structures.

1.11 Internal energy for the spatial straight
beam

The lineic34 elastic strain energy density for the spatial rectilinear beam
may be expressed as a quadratic function of its cross section resultants,

31namely, forces or moments, but also a pressure load etc.
32namely displacements and rotations, or, in the case of a pressure load, the

volume spanned with deformation by the pressurized surface.
33this nonlinear extension of the Castigliano theorem is however referred to in

literature as the Crotti-Engesser theorem.
34i.e. per unit length; the far more customary linear adjective is so overloaded of

meanings that I rather prefer such an exotic alternative.
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Figure 1.24: An elastic structure subject to large rotations, which
shows a nonlinear stiffening behaviour; the bending moment diagram
is evaluated based on the beam portion equilibrium in its deformed
configuration. The complementary elastic strain energy U∗ is plotted
for a given applied load f̄ or assumed displacement δ̄, alongside the
elastic strain energy U .
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thus leading to the general form

dU

dl
=

1

2




N
Mx

My

Qx

Qy

Mt




⊤


a1,1 g1,2 g1,3 i1,4 i1,5 i1,6
0 b2,2 e2,3 i2,4 i2,5 i2,6
0 0 b3,3 i3,4 i3,5 i3,6
0 0 0 c4,4 f4,5 h4,6
0 0 0 0 c5,5 h5,6
0 0 0 0 0 d6,6




Sym




N
Mx

My

Qx

Qy

Mt



,

(1.54)
where the coefficient matrix may be equivalently defined as an upper
triangular matrix, or as its symmetric part; the symmetric part of such
coefficient matrix also embodies the compliance matrix for the unit
length beam segment.

Most of the 21 independent matrix coefficients are zero if a few
properties hold for the beam cross section and material; in particular:

� the i coefficients are null if the material is symmetric with re-
spect to the cross-sectional plane, i.e. if the material is mono-
clinic with respect to such a plane. An orthotropic material falls
within this category if one of the principal directions is aligned
with the beam axis. An isotropic material always falls within this
category. Local scale material homogeneization may be consid-
ered for composite materials which are pointwisely not compliant,
but compliant in average (e.g. through-thickness balanced lami-
nates);

� the g and the h coefficients are also zeroed if, as it ordinarily
happens, the poles employed in evaluating the bending moments
and the torsional moment coincide with the centroid and with
the shear center, respectively. Moreover, the coordinates of such
two points, if not already known, may be derived by imposing
null g and h coefficients.

� the e coefficient is zero if the local x, y axes are aligned with the
principal directions of inertia of the cross section;

� the f coefficient is zero for a dedicated orientation choice for
the shear force components, which does not in general coincide
with the principal directions of inertia; those directions however
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coincide with the symmetry axis and its perpendicular direction
for a symmetric cross section.

In the case of a homogeneus, isotropic material, the residual nonzero
coefficients are defined as follows.

a1,1 =
1

EA
{b2,2, b3,3, e2,3} =

{Jyy, Jxx, 2Jxy}
E
(
JxxJyy − J2

xy

)

d6,6 =
1

GKt
{c4,4, c5,5, f4,5} =

{χx, χy, χxy} ,
GA

where

� A, Jyy, Jxx and Jxy are the section area and moments of inertia,
respectively;

� Kt is the section torsional stiffness (not generally equivalent to
its polar moment of inertia);

� E and G are the material Young Modulus and Shear Modulus,
respectively.

The shear energy normalized coefficients χy,χx,χxy are specific to
the cross section geometry, and may be collected from the expression
of the shear strain energy due to the concurrent action of the Qx, Qy

shear forces.
In the case the strain energy contribution of any of the stress resul-

tants is to be neglected, the associated matrix coefficients may be set
to zero; such manipulation makes the beam rigid with respect to the
stress resultant whose contribution to the strain energy is nullified.

Finally, the quadratic form matrix35 in Eq. 1.55 may be used to
derive from the generalized stress components {N,Mx,My, Qx, Qy,Mt}
for the beam cross section the energetically associated generalized strain

35here the symmetric part, and not the matrix itself, has to be strictly employed,
as underlined.
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components




e
1
ρx
1
ρy

gx
gy
ψ′




=




a1,1 g1,2 g1,3 i1,4 i1,5 i1,6
0 b2,2 e2,3 i2,4 i2,5 i2,6
0 0 b3,3 i3,4 i3,5 i3,6
0 0 0 c4,4 f4,5 h4,6
0 0 0 0 c5,5 h5,6
0 0 0 0 0 d6,6




Sym




N
Mx

My

Qx

Qy

Mt



, (1.55)

where

� e is the axial elongation at the centroid;

�
1
ρx
, 1
ρy

are the flexural curvatures;

� gx, gy are the average shear strain components;

� ψ′ is the torsional twist rate.
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Figure 1.25: A rollbar-like frame; Figures a) and b) collect the consid-
ered in-plane and out-of-plane actions, respectively, which are split for
added readability.

1.12 A semi-worked example: a rollbar-like frame

Let’s considered the plane frame structure depicted in Fig. 1.25, rep-
resenting a simplified rollbar; a thin-walled, circular steel profile is
employed for both the upright and the cross members, whose median
diameter and thickness are d and t, respectively 36.

A global (E, xyz) reference system is employed37 to represent the
frame nodal coordinates, if required, and the constraint reaction com-
ponents.

A local reference system (G, 123) is set along the beam segments,
whose third axis follows the beam branch orientation, and whose first
axis is everywhere aligned with the global z direction.

The rollbar frame is clamped at both the A and E ends, and it is

36The present treatise is applicable to a generic material and cross section, pro-
vided that symmetry holds with respect to the plane the frame lies on; such further
condition may be overcome coupling terms are considered between the otherwise
uncoupled in-plane to out-of-plane problems.

37sorry for its unusual orientation, it has been inherited from some legacy lecture
notes of mine.
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loaded i) by a lateral force P , and ii) by a transverse force H, both
applied at node C.

Expected results of the analysis are i) the internal action com-
ponents at each frame node, and wherever they are maximal ii) the
constraint reactions at the A and E clamps, iii) the lateral, inward38

deflections ũB, ũC at B and C, respectively, and iv) the transverse39

deflections w̃C, w̃D at both C and D.
The second Castigliano theorem is resorted to for deflection cal-

culation, thus requiring the application of auxiliary, fictitious external
forces F and I, that may perform work with the monitored deflection,
if not already set (see the H force).

The structure is six times statically indeterminate; the clamp at A
is removed, and the associated six components of constraint reaction,
see Fig. 1.25, are set as further, parametrically defined external loads;
a statically determinate principal stucture is hence obtained, which
preserves the clamp at E as its only connection to ground.

The expression of the structure internal strain energy, namely

U (P, F,XA, YA,ΨA, H, I, ZA,ΘA,ΦA) (1.56)

is obtained as a function of i) the applied loads and ii) of the para-
metrically defined reactions by integration of the lineic strain energy
density along the structure; such energy density depends in turn on
the pointwise value of the internal action components, see Eq. 1.55.

The actual value of those parametrically defined loads is obtained
by imposing a null deflection along each of the six d.o.f.s at node A, and
thus casting a linear (due to the assumed structure behaviour) system
of six equations in the aforementioned six unknown parameters. Again,
the second Castigliano theorem is employed in evaluating the node A
generalized displacements.

Please note that Eq. 1.56 strain energy is deliberately not a func-
tion of the reactions at E. If the strain energy expression contains
any of the reaction components associated to the principal structure
residual constraints, their dependence (due to equilibrium) on exter-
nal loads and parametrically defined reactions must be made explicit
before applying the partial derivative operator 40

38i.e. counter-oriented with respect to the x global axis
39i.e., oriented along the negative global z direction
40The contribution of the external loads and parametric reactions to the structure
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The simplest way to do so is to substitute within U their expression
according to the equilibrium equation solution.

Due to the symmetric nature of the structure under scrutiny, and
to its assumed linear behavior, the overall problem may be partitioned
into two uncoupled symmetric (or in-plane) and skew-symmetric(or
out-of-plane) subproblems, that might be solved separately.

In order to streamline the treatise, the contribution alone is consid-
ered of the moment kind of stress resultants, thus neglecting the profile
compliance with respect to axial and shear internal actions; such cus-
tomary approximation - consistent with an inextensible Euler beam
model - is justified by the supposed profile slenderness.

Figure 1.26 collects the contribution of each the in-plane external
actions to the M1 bending moment, plotted along the beam flank in
tension. Such bending moment diagrams are obtained by considering
the equilibrium of the portion of principal structure that spans from
the A free end to each section which in turn is under scrutiny; please
try to derive those diagrams on your own, since they might hide some
errors.

We also notice that, consistently with the local axis orientation,M1

is assumed positive if it stretches the profile fibers that are inner with
respect to the frame.

Similarly, Fig. 1.27 collects the M2 bending moment component,
assumed positive if it stretches the fibers on the “back” of the frame (i.e.
the cross section points whose z or 1 coordinates are the most negative),
along with the Mt torsional moment, whose sign is explicitly reported.
Again, please derive them independently, since some mistakes might be
present.

We observe that all the diagrams are branchwise linear, due to the
piecewise straight centroidal segment nature, and the absence of dis-
tributed actions. In such condition, a generic M moment components
may be conveniently expresses as

M(s) =M0 f
(s
l

)
+Ml g

(s
l

)
, f(ξ) = 1− ξ, g(ξ) = ξ

strain energy could otherwise remain nested within the constraint reaction symbols,
at the risk of leaving them behind while performing the differentiation. Such loss
of legitimate contributes actually occurs on the Maxima algebraic manipulator if
the constraint reaction components are not explicitly declared dependent on the
aforementioned actions.
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where s ∈ [0, l] is a dimensional abscissa which spans through the l
extension of each oriented segment, M0 and Ml are the moment values
at the extremities, and {f, g} are two weight function whose aim is
to linearly interpolate the moment extremal values along the beam
segment interior.

For each segment, the associated strain energy is evaluated as

U =

∫ l

0

M2
1 (s)

2EJ︸ ︷︷ ︸
symm.

+
M2

2 (s)

2EJ
+
M2

t (s)

2GKt︸ ︷︷ ︸
skew−symm.

ds, (1.57)

where

J =
πd3t

8
, Kt =

πd3t

4
, G =

E

2 (1 + ν)
;

each beam branch contribution is finally accumulated to obtain the
overall structure strain energy, possibly split into its symmetric and
skew-symmetric parts.

Once the structure strain energy has been evaluated, we may pro-
ceed in evaluating the requested deflections as

ũB =
∂U

∂F
ũC =

∂U

∂P

w̃C =
∂U

∂H
w̃D =

∂U

∂I
;

similarly, we may derive the deflections at A, and cast a system of equa-
tions to enforce kinematic compatibility with the original constraints,
namely

uA =
∂U

∂XA
= 0 vA =

∂U

∂YA
= 0 ψA =

∂U

∂ΨA
= 0

wA =
∂U

∂ZA
= 0 θA =

∂U

∂ΘA
= 0 ϕA =

∂U

∂ΦA
= 0.

The value of the six unknown reactions at A may be then derived as a
(linear) function of the remaining loads, e.g.

XA = XA (F, P,H, I) = αF + βP +γH + δI︸ ︷︷ ︸
=0

YA = YA (F, P,H, I) = . . .

ΨA = . . .
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etc., where the linear combination coefficients are placeholders for their
actual counterparts which derive from the system solution. The ficti-
tious nature of theH and I load is now explicited by assuming for them
a null magnitude. Unless done before, the constraint reaction compo-
nents at E may now be derived by solving the equilibrium equations
for the whole principal structure.

Finally, we may substitute within the previously obtained ũB, ũC,
w̃C, and w̃D displacements the now available expressions for the para-
metric reaction forces, thus obtaining their dependence on the F , P
external loads alone.
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Figure 1.28: A simplified ladder-frame chassis, consisting in two lon-
gitudinal channel-section beams spanning along the wheelbase; their
connection to the axles are assumed as rigid for simplicity, and the
three supports are such to exert a purely vertical reaction force.

1.13 A semi-worked example: a simplified lad-
der frame chassis

The present contribution concerns the torsional stiffness41 evaluation
for the simplified ladder-frame chassis depicted in Fig. 1.28, whose
track width is 2c for both the axles, and whose wheelbase is 2a; the
length of the two rail profiles is nominally assumed equal to the wheel-
base.

Torsional stiffness is an established chassis structure conventional
property, which is significant for the suspension tuning practicability

41a.k.a. torsional rigidity
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with respect to under-/oversteering control; still, it is simplistic to
assume that a high enough torsional stiffness may prevent handling
issues in general, since, e.g. it is pretty uncoupled with the structure
response to dynamic lateral forces. Nevertheless, the measurement
procedure is straightforward, and the test rig is cheap.

Fig. 1.28a represents a formally correct test setting for the torsional
stiffness; the chassis is simply supported at three of the wheel centers,
whereas a vertical force F is applied at the fourth one, at which the
dw vertical deflection is also measured.

The vertical supports allow for three residual rigid body motions
along the (O,xy) horizontal plane; a statically determinate set of fur-
ther constraint is required for uniquely positioning the structure in
space.

It is of the most importance to grant the statically determinate
nature of the overall constraining system, since any further restraint
might unduly support the loaded structure, and thus spuriously raising
its observed stiffness.

A straightforward analysis of the chassis structure global equilib-
rium42 returns that each axle is loaded by a pair of equal and opposite
vertical forces - i.e. by a pure, longitudinally oriented moment vector,
and that those two front and rear moments are self compensating. In
the case of equal track widths, four vertical forces of equal magnitude
F are applied at the four wheel centers, whose orientation switches
along the axles, and from the axle to axle; in the case of different track
widths, forces of equal magnitude are applied at each wheel of the axle,
and they scale from the front to the rear with the inverse of the track
width.

Once obtained the experimental ratio between the F force and the
dw deflection, the torsional stiffness k may be derived as the ratio
between the magnitude of the torque applied to each axle, and the
relative twist angle, namely

k =
2cF
dw
2c

=
F (2c)2

dw
, (1.58)

42with reference to Fig. 1.28b, i) rotational equilibrium with respect to the rear
PQ axle requires a downward F force at R, ii) rotational equilibrium with respect
to the front LR axle requires that the two rear supports exert equal and opposite
vertical reactions, whose magnitude is set by iii) the rotational equilibrium with
respect to the longitudinal chassis axis.
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Figure 1.29: A quarter portion of the ladder frame, which is the min-
imal portion to be modeled due to the dual skew-symmetry. Please
note that the (O,xyz) reference system of the present figure coincides
with its fixed counterpart as in Fig. 1.28 in the undeformed configu-
ration only. The present figure reference frame partly follows, in fact,
the structure deflection.

where the 2c track width pertains to the axle that includes the loaded
(and monitored in deflection) wheel center.

In the case under scrutiny of equal track widths, the twice-symmetric
structure is loaded by a system of four forces which are skew-symmetrically
arranged with respect to both the (O,zx) and the (O,yz) planes43.

A twice skew-symmetric problem is thus obtained, whose represen-
tative portion - a quarter of the whole structure - is represented Figure
1.29a.

43a third skew-symmetry plane, namely the (O,xz) exists if the profiles are con-
sistently symmetric; however, limited benefit is attained in considering such a third
skew-symmetry plane in the treatise.
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Skew-symmetry constraints are required at the intersection of the
front axle rigid member with the (O,zx) plane - a point, this, which
is nominally embodied by the A location44, and at the intersection of
the longitudinal rails with the (O,yz) plane, nominally taken at the D
centroid of the interested cross section. Those constraints are set in
order to grant material - or rigid body motion law - continuity between
the modeled, representative portion of the structure, and its images,
and they lead to the reaction forces and moments listed in Fig. 1.29b.

It worth to mention that the problem depicted in Fig. 1.28 is not
twice skew-symmetric in itself, due to the unsimmetric nature of the
support arrangement; however, the problem acquires such a property
once the exerted reaction forces are considered, in place of the origi-
nating constraints.

In such cases, the problem solutions obtained i) for the complete
structure, subject to the original constraints, and ii) for the represen-
tative portion, and duly mirrored, are consistent in terms of strains,
stresses and with regard to their resultants, whereas they differ by
a rigid body motion in terms of absolute displacement and rotations.
Such a behavior can be rationalised by considering that a moving frame
exists, according to which a [skew-]symmetric structure behavior is ob-
served; this moving reference system is ideally pinned to the structure
at the same d.o.f.s that are affected by the [skew-]symmetry constraints.

Most of the skew-symm. constraint reaction forces may be set based
on the equilibrium equations for the quarter ladder-frame structure, see
Fig. 1.29b; UA and VD are set null based on the translational equilib-
rium with respect to the global x and y axes, respectively. By casting a
system of equations which involves the translational equilibrium with
respect to z, and the rotational equilibrium with respect to the (O,x)
and the (O,y) axes - see Figs 1.29c and 1.29d, other three unknown re-
actions amongst WA, ΦA, WD and ΘD may be defined; the remaining
independent equilibrium equation - a rotational one, and associated to
the (O,z) axis - is trivially satisfied in the absence of any contribution,
thus making the overall system of equations rank deficient of degree
one.

The [quarter] ladder-frame structure, loaded according to the tor-
sional stiffness test, appears hence once internally statically indeter-

44any point of the (O,zx) plane may equally serve the purpose
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minate45; we then define a principal structure by fictively releasing
the z oriented constraint at A, and thus allowing for a z-oriented slip-
page at the interface between the ABL rigid member and its image.
As usual, the associated WA reaction force is treated as a parameter,
whose value is tuned to reinstate continuity at A; the remaining con-
straint reactions are then obtained as a linear combination of the F
and WA load parameters.

The second Castigliano theorem is employed to evaluate the wA

vertical deflection at A, which in turn requires the expression for the
internal strain energy to be cast as a function of the same aforemen-
tioned load parameters.

Since the contribution of a rigid member to the structure strain
energy is zero by definition, we proceed to the evaluation of the inter-
nal action components for the channel section rail; by considering the
equilibrium of a DG rail segment, where G is a centroidal point taken
at a s distance from D - see Fig. 1.29a, we obtain

N = 0 Q1 = −VD = 0 Q2 = −WD =WA − F

and

M1 = −sWD = −s (WA − F )

M2 = +sVD = 0

Mt = −ΘD + eWD − fVD = (F −WA) (e+ b)− Fc.

The torsional momentMt does not coincide with−ΘD since the VD,WD

shear aligned forces are assumed as applied at the D - which is a cen-
troid, and they result shifted with respect to the cross-sectional shear
center.

The following expression for the strain energy lineic density is em-
ployed – cfr. Eq.1.55 – which preserves the contribution of all the
internal action components

dU

dl
=

N2

2EAαaxl
+
J22M

2
1 + J11M

2
2 + 2J12M1M2

2E
(
J11J22 − J2

12

)
αflx

+
M2

t

2GKtαtrs
+
χ1Q

2
1 + χ2Q

2
2 + χ12Q1Q2

2GAαshr
.

45Please note that, apart from the peculiar [skew-]symmetric condition, a spatial
closed ring is in general six times statically indeterminate.
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Also, the cross section elastic characteristic with respect to each in-
ternal action component is scaled by a normally unit auxiliary factor
α□, which may steer the elastic response towards infinite compliance
(α□ → 0) or infinite stiffness (α□ → ∞); those stiffness multipliers will
be employed in the discussion of the results below, and may be ignored
otherwise.

We may now integrate such a lineic strain energy density over the
interval s ∈ [0, a], thus obtaining the U internal strain energy for the
quarter frame as a quadratic function of F and WA.

The vertical deflection at A may then be derived according to the
Castigliano theorem, and may be set to zero in order to obtain the
expression of WA as a linear function of F .

As in the previous worked example, such WA(F ) is substituted
within the U (F,WA) quarter frame internal energy expression, which
becomes a function of the sole external load F .

A further applications of the Castigliano theorem let us derive the d
deflection of the F force application point for the quarter ladder-frame
structure, i.e. with respect to the aforementioned moving reference sys-
tem, according to which the displacement field is twice skew-symmetric.

The absolute dw deflection of the L wheel center, i.e. the deflection
observed according to a reference system consistent with the three sup-
ports of Fig. 1.28, may be derived based on the observation that the
internal energy for the whole chassis is four times the one evaluated for
the quarter structure; we thus obtain

dw =
d(4U)

dF
= 4d. (1.59)

Such a result may be rationalized considering the (−d,+d,−d,+d) ver-
tical deflections of the (L,P,Q,R) points, respectively, derived from the
mirrored quarter structure response. A downward, uniform, translation
of magnitude d reestablishes the congruence with the fixed supports at
points P,R, with overall deflections (−2d, 0,−2d, 0). Finally, a suitable
rotation with respect to the PR diagonal raises of a 2d quantity the
vertical position of the Q point, thus reinstating compliance with the
third support. Since the L and the Q points are located at an equal
distance from the pivot line, the same rotation lowers the L point of an
equal 2d quantity, thus leading to the absolute deflection configuration
(−4d, 0, 0, 0).
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Figure 1.30: Dimensions for the channel section employed in calcula-
tions. The web height h is the relevant dimensional parameter, whereas
υ is the ratio between the flange width and the web height, and ϵ sets
the ratio between the wall thickness – assumed uniform – and the web
height. Centroidal coordinates (m,n) are measured with respect to the
web midspan, whereas the shear center coordinates (e, f) are measured
with respect to the centroid. Please note that the cross-section prop-
erties reported in the maxima worksheet are evaluated according to a
small thickness hypothesis, i.e. their expressions is consistent with a
vanishing ϵ, first order Taylor expansion.

The ladder-frame chassis torsional stiffness may be then evaluated
according to Eqn. 1.58, which leads to a pretty composite expression
whose rationalization is complicated.

In order to isolate the influence of the various parameters, a ref-
erence configuration is defined in terms of channel section and global
chassis dimensions. In particular, the worked example provided in form
of a maxima worksheet employs the channel section of Fig.1.30 for both
the rails. Also, all the α□ auxiliary stiffness multipliers are bonded to
unity in the reference case.

The response of the structure to the variation of one or more pa-
rameters is assessed based on the torsional stiffness ratio between the
altered configuration, and the reference one.

Leaving to the willing reader the influence analysis of the various
parameters46, we focus on how the three main sources of compliance

46Consider in particular the influence of the rail span length a, of their mutual
distance b, and the influence of the cross section size h and thickness t. Since the
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– namely, the rail compliance to the torsional moment, to the bend-
ing moment, and to shear actions – interact in defining the overall
compliance of the simple structure under scrutiny.

The ratio is hence considered between the chassis torsional stiffness
for the reference configuration, namely kref , and its k (αtrs, αflx, αshr)
counterpart obtained with given αtrs, αflx and αshr profile torsional,
bending a shear stiffness multipliers, respectively.

If we speculate the profile flexural47 and shear stiffness to vanish,
i.e. the longitudinal rail torsional stiffness is fictitiously left alone in
elastically connecting the two rigid elements, we may consider the limit

lim
αflx,αshr→0

k (1, αflx, αshr)

kref
= p > 0 (1.60)

which returns a nonzero fraction of the unity, whose value is pretty
small for the open thin-walled section under scrutiny, but that might
become relevant for bulky closed section profiles. Each profile is in fact
twisted by the same amount of relative rotation that occurs between
the two front and rear rigid members, thus accumulating internal strain
energy, and thus requiring a finite work-supplying external force.

We now consider the complementary condition, in which the two
rails lose their capability to elastically react to torsion, whilst retaining
their full shear and flexural stiffness; we hence consider the limit

lim
αtrs→0

k (αtrs, 1, 1)

kref
= 1− p > 0 (1.61)

which also returns a nonzero fraction of the unity, complementary to
the former one, as expected. Such a fraction of the overall stiffness
may be observed to vanish e.g. with vanishing spacing between the
two rails; it is in fact associated to the vertical misalignment of the
longitudinal beam ends, which equates the product of the relative rigid
member rotation by an arm that is equal to half the rail spacing. Such

material is homogeneous and isotropic, the stiffness varies linearly with the Young
modulus, you don’t really have to check. For a cleaner analysis, try also to isolate
the various sources of compliance, i.e. compliance with respect to bending moments,
torsional moment, and shear actions alone.

47Here, we follow for added clarity the academic distinction between bending,
which – in consistency with to the general nonuniform bending meaning – may
be employed as an umbrella term for both flexure and shear, and flexure, which
excludes shear contributions.

74



a vertical misalignment may not be achieved through a profile rigid
motion, and hence a further contribution is due to the overall strain
energy.

The complementary nature of the two above quantities hints for a
in parallel disposition of the two means the profile may react to the
relative rotation of the rigid members they are clamped to.

The latter contribution may be further scrutinized by splitting the
two distinct shear and flexural contributions; we consider in particular
the two limits

lim
αshr→0

lim
αtrs→0

k (αtrs, 1, αshr)

kref
= 0 lim

αflx→0
lim

αtrs→0

k (αtrs, αflx, 1)

kref
= 0

(1.62)

which both vanish, thus indicating that none of the two isolated elastic
reactions may be activated alone. By turning into rigid the profile with
respect to either shear or flexure, i.e.

lim
αshr→∞

lim
αtrs→0

k (αtrs, 1, αshr)

kref
= q > 1− p > 0 (1.63)

lim
αflx→∞

lim
αtrs→0

k (αtrs, αflx, 1)

kref
= r > 1− p > 0, (1.64)

we obtain finite normalized flexural and shear compliances, 1/q and
1/r respectively, whose sum equates the cumulative compliance 1/(1−
p) attributable to the overall bending. An in-series arrangement of
the two flexural and shear compliances is thus suggested, which finds
rationalization in the fact that the same end transverse shift may be
accomodated both through i) an S-shaped, purely flexural deflection,
ii) through a card-deck pure shear inclination, or iii) a combination of
the two.

The compliance components’ arrangement for the simplified ladder-
frame chassis under scrutiny is shown in Figure 1.31; in a general
structure, the mutual interaction of the elastic members may not be pi-
geonholed within the simplistic “many in parallel” or “many in-series”
models; a complex combination of those two elementary modes may be
considered even for the simple, single d.o.f. case treated in the present
paragraph.

It is finally noted that, in the case of struts manufactured from
composite laminates, the speculative selective deactivation of one or
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Figure 1.31: An ASCII art rationalization of the compliance com-
ponents’ arrangement for the simplified ladder frame chassis under
scrutiny; the torsional elastic compliance of the profiles acts in par-
allel with their combined in-series flexural and shear compliance.

the other mean of elastic response earns actual significance, since the
simple lack of dedicated laminae may suffice in obtaining such a tricky
behavior; as an example, the absence of axially oriented fibers in a
CFRP laminated profile may lead to a condition which is very similar
to the αflx → 0 case.
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Chapter 2

Fundamentals of Finite
Element Method for
structural applications
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2.1 Basic formulation for plates and shells

2.1.1 Some assumptions for the kinematic model of the
plate

A necessary condition for applying the plate/shell model framework
to a deformable body is that a geometrical midsurface might be, if
only loosely, recognized for such a body. Then, an iterative refinement
procedure1 may be applied to such tentative midsurface guess.

Then, material should be observed as [piecewise-]homogeneous, or
slowly varying in mechanical properties while moving at a fixed distance
from the midsurface.

Of the two outer surfaces, one has to be defined as the upper or top
surface, whereas the other is named lower ot bottom, thus implicitly
orienting the midsurface normal towards the top.

Finally, the body should result fully determined based on a) its
midsurface, b) its pointwise thickness, and c) the through-thickness
(tt) distribution of the constituent materials.

The geometrical midsurface is of little significance if the material
distribution is not symmetric2; such midsurface, in fact, exhibits no rel-
evant properties in general. Its definition is nevertheless pretty straigh-
forward.

In the present treatise, a more general reference surface definition is
preferred to its median geometric counterpart; in particular, an offset
term o is considered that pointwisely shifts the geometric midsurface
with respect to the reference surface. A positive offset shifts the mid-
surface towards the top.

With the introduction of the offset term, the reference surface may
be arbitrarily positioned with respect to the body itself; as an example,
an offset set equal to plus or minus half the thickness makes the refer-
ence surface correspondent to the bottom or top surfaces, respectively.

Such offset term becomes fundamental in the Finite Element (FE)
shell implementation, where, in fact, the reference plane is uniquely

1Normal segments may be cast from each point along the midsurface, that end
on the outer body surfaces. The midpoint locus of these segments redefines the
midsurface itself.

2If the unsimmetric laminate is composed by isotropic layers, a reference plane
may be obtained for which the b membrane-to-bending coupling matrix vanishes;
a similar condition may not be verified in the presence of orthotropic layers.
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defined by the position of the nodes, whereas the offset arbitrarily
shifts the geometrical midsurface.

In the case of limited3 curvatures, and for considerations whose
scope is local, the tangent reference plane may be employed in place of
the possibly curve reference surface, thus locally reducing the general
shell treatise to its planar, plate counterpart.

Figure 2.1 shows the basic kinematic relations for the shear de-
formable (Mindlin) plate model; in the undeformed configuration, P is
a generic material point along the plate thickness, and Q is its normal
projection on the reference plane. Such Q point is named reference
point for the tt normal segment it belongs to.

A local reference system is defined, whose third axis z is normal
to the undeformed midsurface; the first ip x axis may be arbitrarily
oriented, e.g. by projecting a global v̂ unit vector, and the remaining
y axis may be construed such that it finalizes the right xyz triad.

Then, the deformed configuration is considered, and the motion
of both the points is monitored according to two mutually orthogonal
views. The P displacement components (uP, vP, wP) may be defined as
a function of the motion of its reference point Q, described in terms
of its displacement components (u, v, w), plus the two θ, ϕ rotation
components with respect to the x, y ip local axes, respectively. Those
angular displacements are defined with respect to the normal segment
orientation, as measured on the orthogonally projected views. After
some cumbersome trigonometric manipulations4 we obtain

uP = u+ z (1 + ϵ̌z)
cos θ√

1− sin2 ϕ sin2 θ
sinϕ

vP = v − z (1 + ϵ̌z)
cosϕ√

1− sin2 ϕ sin2 θ
sin θ

wP = w + z

(
(1 + ϵ̌z)

cosϕ cos θ√
1− sin2 ϕ sin2 θ

− 1

)
,

where z (1 + ϵ̌z) is the length of the PQ segment on the deformed con-
figuration, which is further scaled by the fractional factors due to pro-
jection along Fig. 2.1 views.

3with respect to thickness
4in which it may happen to miss some higher order terms, as the author persis-

tently did in previous versions of the present notes
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∂x

P

P

Q

wP bz cos θ ≈ z

gzx

ϕ̃

bz ≈ z
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(1 + ϵ̌)√

1− sin2 ϕ sin2 θ
{cos θ, cosϕ} ≈ 1

Figure 2.1: Relevant dimensions for describing the deformable plate
kinematics. Here, two a, b factors are introduced which reduce to unity
for small rotations and strain.
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The ϵ̌z average z strain term is defined based on the accumulation
of the Poisson shrinkage (or elongation) along the PQ segment, i.e.

ϵ̌z(z) =
1

z

∫ z

0
ϵzdς

=
1

z

∫ z

0
− ν

1− ν
(ϵx + ϵy) dς,

the second expression holding in the case of isotropic materials only.
The stress component σz which is normal to the reference surface is

in fact assumed to be either zero or negligible. Being a full discussion5

of such a plane stress assumption beyond the scope of the present
contribution (bspc), we limit our treatise to the observation that, in
the inevitably anecdotal case of Fig. 2.2, the ratio between the oop
σz stress component and its ip counterparts varies with the square
of the ratio between the thickness and an in plane significant length.
The engineering relevance of such a normal stress component rapidly
vanishes with increasing plate thinness. The Fig. 2.2 examples also
points out the intermediate magnitude decay of the oop shear stresses,
whose normalized form linearly varies with the same thinness ratio.

Such displacement components may be linarized with respect to i)
the small rotations and ii) small ϵz strain hypotheses, thus obtaining
the following expressions

uP = u+ zϕ (2.1)

vP = v − zθ (2.2)

wP = w. (2.3)

A treatise of the large rotation and/or large strain nonlinear case is,
again, bspc.

5Such assumption is coherent with the free surface conditions at the top and
the bottom skins, and with the moderate thickness of the elastic body, that allows
only a narrow deviation from the boundary values. In fact, the equilibrium of a
partitioned, tt material segment requires that

σz(z) = −
∫ z

−h/2+o

∂τzx
∂x

+
∂τyz
∂y

dz = +

∫ +h/2−o

z

∂τzx
∂x

+
∂τyz
∂y

dz,

where τzx, τyz are the interlaminar, oop shear stress components, whose ip gradient
is limited.
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Figure 2.2: Normalized stress component magnitude in the case of a
simply supported circular plate subject to normal pressure, according
to the spatial theory of elasticity, see [2, p.349]. A homogeneous and
isotropically elastic circular plate of diameter d and thickness h is sim-
ply supported along its perimeter (i.e. apart from the their transverse
component, displacements are free, and so are rotations), and it is
loaded by a unit pressure at its upper surface. The peak magnitude of
the transverse stress σz falls at the pressurized surface, and it equates
the pressure value. The oop shear stress τzr is maximal at the lateral
surface median curve, and it equates 3

8

(
d
h

)
. The two ip direct stress

components σr, σθ reach the common peak value of 3(ν+3)
32

(
d
h

)2
+ ν+2

20
in correspondence of the plate center, at the stretched surface; the

thin plate peak stress counterpart, σref =
3(ν+3)

32

(
d
h

)2
, which lacks the

O
((

d
h

)0)
second term, is taken as the normalizing stress value for the

ordinate. The remaining τrθ, τθz stress components are zero due to
axisymmetry. The commonwise ν = 0.3 Poisson ratio value is used in
tracing the Figure.
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According to such linearized expression, the kinematics of the P
points originally6 laying on a tt segment that is normal at Q to the
reference surface may be described as that of a rigid body.

The intrinsic shear related warping is either negated or neglected,
along with any sliding motion of the P points along the segment7.

Also, the behaviour of such a segment is coherent with its rigid
body modeling from the external loads point of view; in particular the
external actions act on the plate deformable body only through their
tt resultants, and no stress/strain components, or work, are associated
by the shell framework to wall squeezing actions, e.g. laminations.

We thus observe that, according to the shell framework, the follow-
ing external actions are not distinguishable: i) a q pressure applied at
the upper surface, ii) a −q traction applied at the lower surface, iii) a
q differential pressure between the outer surfaces, with p + q applied
at the top, and a generic p applied at the bottom, and iv) a trans-
verse inertial force whose area density is q, namely due to a oppositely
oriented q

ρh acceleration, where ρ is the material density. Also, a fp,
friction induced, x-oriented shear action at the upper surface is not dis-
tinguishable from an analogous distributed force for unit area applied
at the reference surface, plus a y-oriented distributed moment per unit
area, whose magnitude is fp(h/2 + o).

By observing the deformed configurations in Fig. 2.1, the normal

displacement
(
∂w
∂x ,

∂w
∂y

)
gradient – i.e. the gained slope of the deformed

reference surface, with respect to its original orientation – is made
up of two terms, namely the rotation of the normal segment, which
originates from the accumulation of the flexural curvature, and the
shear compliance, which resembles the transverse slippage typical of a
card deck. The following expressions are derived

∂w

∂x
= gzx − ϕ (2.4)

∂w

∂y
= gyz + θ (2.5)

6i.e. in the undeformed configuration
7The elision of higher order terms renders the laminate kinematically – but not

elastically – indistinguishable from its counterpart that might derive from a plane
strain assumption.
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in which the latin gz∗ employed for the oop shear components empha-
sizes their tt average8 nature.

2.1.2 Local and generalized strains

The ip strain components may hence be derived at the P point through
differentiation, and in particular we have

ϵx =
∂uP
∂x

=
∂u

∂x
+ z

∂ϕ

∂x
(2.6)

ϵy =
∂vP
∂y

=
∂v

∂y
− z

∂θ

∂y
(2.7)

γxy =
∂uP
∂y

+
∂vP
∂x

(2.8)

=

(
∂u

∂y
+
∂v

∂x

)
+ z

(
+
∂ϕ

∂y
− ∂θ

∂x

)
(2.9)

It clearly appears from the expressions above that the pointwise
strain values are due to the sum of i) the strain components as observed
at the reference plane,

e =




∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x


 =




ex
ey
gxy


 ≡ ϵQ (2.10)

which are named membrane strains9 in the customary case in which
the material is symmetric10 with respect to the reference plane, plus ii)
terms that linearly scale with the z distance from such a plane, whose
coefficients

κ =




+∂ϕ
∂x

−∂θ
∂y

+∂ϕ
∂y − ∂θ

∂x


 =




κx
κy
κxy


 (2.11)

8in strain energy
9 e is an alternative symbol for the more natural, and previously employed ϵ̄ ,

whose double barred appearance is however terrible. To complete the transition,
also the ϵ̄x, ϵ̄y and gxy symbols have been changed onto their ex, ey, gxy counterpart.

10or, more generally, elastically balanced
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are named curvatures.11 The strains at the reference surface, and
the curvatures constitute the ip subset12 of plate [shell] generalized
strain components, which are e.g. usually returned by fe solvers; those
components allow for the following compact representation of the ip
strains at P

ϵ P ≡ ϵ = e + z κ . (2.12)

It worth to be stressed that the kinematic assumptions for the plate
model impose a linear tt profile for each single ip strain component;
those components may hence be sampled at the outer surfaces alone,
without loss of information. It is here anticipated that an analogous
behaviour is proper of the ip stress components if and only if (iif) the
material is elastically homogeneous along the thickness .

The two κx and κy curvatures equate to the inverse of the normal
curvature radii, as probed at the reference surface along the respec-
tive local directions; those curvatures are positive if the upper plate
fibers are stretched, or, equivalently, if the reference surface acquires
convexity if observed from above – i.e. from a point on the positive z
axis.

Figure 2.3 clarifies the nature of the mixed curvature term κxy,
which is e.g. typical of open thin walled members – and flat plates as
a particular case – subject to torsion13.

11Please note that in the case of shells, the bare curvature name may be confusing,
since it might refer to either

� the initial, original, geometric, undeformed curvature, which is proper of the
shell before the application of some external loads, or to the

� strain, strain-induced, elastic[-plastic], bending, flexural curvature, or curva-
ture change, which consist in the variation of the thin wall curvature due to
the effect of the applied loads.

Except for [locally] flat panels, the author suggests to always specify which kind of
curvature we refer to. Here, curvature is used with reference to curvature change.

12the (gzx, gzy) oop subset of generalized strain components will be introduced in
paragraph 2.1.5 .

13the torsional curvature denomination for the κxy term, that the present author
has widely employed in the past, is not so proper nor widespread, so it might be
better avoided. Flexure and torsion are in fact not as uncoupled in the plate realm
as they are in beam theory, and flexure might be conveniently employed as an
umbrella term that also encompass profile (open and thin) wall deformation due to
pure torsion.
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(b)

(c) (d)

(a)

x

y

θ
φ

Figure 2.3: Positive κxy mixed curvature for the plate element. The
grayscale coloring is proportional to the normal displacement w, which
spans from an extremal downward deflection (black), to an equal in
modulus extremal upward deflection (white). The gray level at the
centroid is associated to zero. Subfigure (a) shows the positive γxy shear
strain at the upper surface, the ip undeformed midsurface, and the
negative γxy at the lower surface; the point of sight related to subfigures
(b) to (d) are also evidenced. θ and ϕ rotation components decrease
with x and increase with y, respectively, thus leading to positive κxy
contributions. As shown in subfigures (c) and (d), the mixed curvature
of subfigure (b) evolves into two anticlastic bending curvatures if the
reference system is aligned with the square plate element diagonals,
and hence rotated by 45◦ with respect to z.
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2.1.3 Stresses, and their through-thickness resultants

The ip stress components at P are derived from strains by referring to
the material elastic constants, and to the plane stress hypothesis. We
hence have



σx
σy
τxy


 = σ = D ϵ = D e + zD κ , (2.13)

where D embodies the material constitutive law which elastically
relates to ip stress/strain components, and which is derived according
to the plane stress hypothesis.

In the particular case of an isotropic material – the generally or-
thotropic case is treated below – such a matrix takes the form

D =
E

1− ν2




1 ν 0
ν 1 0
0 0 1−ν

2


 , (2.14)

whereas the normal component of strain, which is due to the Poisson
shrinkage alone, may be evaluated as

ϵz = − ν

1− ν
(ϵx + ϵy) . (2.15)

The attentive reader may observe that no mention is made to the
oop shear stresses, to which paragraph 2.1.5 is devoted below.

Moreover, the absence of transverse shear terms in current para-
graph formulation, and in particular in Eq. 2.13, hints for the ip and
the oop stress/strain components to be elastically uncoupled; the ma-
terial has evidently been implicitly assumed as monoclinic with respect
to the reference surface. Such a condition holds e.g. for isotropic ma-
terials, and for the orthotropic plies usually employed in laminates.

As in the classical theory of beams, stress components are inte-
grated along the relevant unit of analysis, namely the cross section
there, and the tt normal segment here, to obtain suitable internal ac-
tion resultants.

According to the thin plate framework, stress resultants take the
form of forces per unit length along the surface, and they may be
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expressed as

q =




qx
qy
qxy


 =

∫

h
σ dz

=

∫

h
D dz

︸ ︷︷ ︸
a

e +

∫

h
D zdz

︸ ︷︷ ︸
b

κ (2.16)

in the case of the ip components, whereas for the oop components we
have

q z =

[
qxz
qyz

]
qxz =

∫

h
τzxdz qyz =

∫

h
τyzdz. (2.17)

Those quantities may be interpreted with respect to their (doubled if
single) subscripts as follows: qab is the b component of internal ac-
tion that is transmitted through a tt imaginary gate, whose in plane
width is unit and whose normal is oriented along a. According to this
rationalization, the q components are also called stress flows.

Besides the internal action resultants of the force kind, by weighting
the stress component contribution based on their z lever arm we obtain
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the moment stress resultants (or moment flows), whose expressions
follow

m =




mx

my

mxy


 =

∫

h
σ zdz

=

∫

h
D zdz

︸ ︷︷ ︸
b≡ bT

e +

∫

h
D z2dz

︸ ︷︷ ︸
c

κ . (2.18)

A selection of internal action components is represented in Fig. 2.4
shows, along with the stress distributions they arise from.

2.1.4 Constitutive equations for the plate

By employing the matrices defined in Eqs. 2.16 and 2.18, the cumula-
tive generalized strain - stress resultants relations for the plate (or for
the laminate) may be summarized in the following expressions

[
q

m

]
=

[
a b

bT c

] [
e
κ

]
(2.19)

which are usually referred to as the constitutive equations of the [lam-
inate] plate, and the coefficient matrix, named constitutive matrix for
the laminate, summarizes the elastic response of the latter.

The contribution of the ip stress/strain components to the elastic
strain energy area density14 is defined based on the previous relation
as

υ† =
1

2

[
q

m

]⊤ [
e
κ

]
(2.20)

=
1

2

[
e
κ

]⊤ [
a b

bT c

] [
e
κ

]
. (2.21)

The a and the c minors of the constitutive matrix characterize
the plate stiffness with respect to membrane and flexural load case
families respectively; the membrane/flexural coupling stiffness minor

14i.e. strain energy per unit reference surface area
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b , which is in general nonzero, vanishes if the material is symmetrically
distributed with respect to the reference surface.

In the commonwise case of tt homogeneous material, and null off-
set15 we have

a = hD b = 0 c =
h3

12
D ,

i.e. the membrane stiffness varies linearly with the wall thickness,
the flexural stiffness varies with the cube of the thickness, and the
membrane and the flexural loadings are mutually uncoupled. Such a
laminate elastic properties dependence on thickness essentially holds
also for laminates, if the tt distribution of the various materials is kept
comparable.

2.1.5 The transverse shear stress/strain components

A full treatise on the title topic is, due to its complexity, bspc; starting
points for further investigation my be found in [3], [4] or in the theory
manual of your favourite fe solver16.

The two transverse shear components

g z =

[
gyz
gzx

]

are in fact more directly recognizable as further contributions to the(
∂w
∂x ,

∂w
∂y

)
normal deflection gradient, with respect to what is attributable

to flexure alone, than tt averages of actual, pointwise shear strains –
see e.g. Figure 2.1.

Since no direct procedure is available17 for directly probing the gyz
and gzx quantities in a deflected plate, their definition is inevitably
nebulous.

The two transverse shear stress resultants defined in Eq. 2.17

q z =

[
qxz
qyz

]

15In the presence of a nonzero offset between the reference and the median planes,
the uncoupled nature of the plate membrane/flexural loadings is only formally lost.
If the same problem is considered based on a median reference plane, in fact, such
a property is obviously restored.

16See e.g. MSC.Marc 2013.1 Documentation, Vol. A, pp. 433-436
17as far as the writer knows
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are assumed to perform work18 on the same gyz and gzx transverse
shear components, respectively; the transverse shear contribution to
the elastic strain energy per unit ref. surface area is hence

υ‡ =
1

2
g ⊤z q z =

1

2
gxzqxz +

1

2
gyzqyz. (2.22)

The constitutive equation for the transverse shear is set at tt normal
segment (vs. punctual) level, with the declared aim of collecting the
elastic strain energy contributions along the thickness, and they are
usually formulated as

υ‡ =
1

2
g ⊤z

[
χ

(
1

h

∫

h
G−1dz

)−1]

︸ ︷︷ ︸
Γ

g z (2.23)

where G is the pointwise constitutive matrix for the transverse shear
components19 – which is considered in terms of its tt harmonic aver-
age20, χ is a shear correction factor – which accommodates for possibly
any incongruence in the formulation, and Γ is an emended transverse
shear constitutive matrix for the whole plate.

In the case of isotropic materials, G is a diagonal matrix whose
terms equate the shear modulus, i.e.

G =
E

2 (1 + ν)

[
1 0
0 1

]
,

whereas the χ shear correction factor is usually assumed as 5
6 if the

material is tt uniform21; different χ values are however proposed in
literature, see e.g. [5], along with different procedures22 for evaluating

18in particular, work for unit reference surface area

19 G is the 2 by 2 matrix s.t., pointwisely,

[
τzx
τyz

]
= G

[
γzx
γyz

]
.

20the shear sliding - rather than the elastic reactions, is accumulated across the
various layers, thus assuming an in series layout of equivalent springs

21please note the parallel with the inverse 1.2 correction factor for the shear
contribution to the beam elastic strain energy, proper of the solid rectangular cross
section.

22we report as an example the notable case of of sandwich panels – whose trans-
verse shear compliance is rarely negligible, in which Γ is defined as the G foam

transverse shear constitutive matrix for the foam/honeycomb material interposed
between the outer skins, multiplied by the overall panel thickness h; in this case the
χ transverse shear correction factor is implicitly defined as unity.
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Γ . By comparing Eqns. 2.22 and 2.23 we also derive the de facto
transverse shear constitutive relation

q z = Γ g z. (2.24)

for the Mindlin shear deformable plate.
In the case pointwise values are requested for the τzx and τyz stress

components – e.g. in the analysis of interlaminar stresses in composite
laminates, those quantities are derived from the assumed absence of
shear stresses on the lower surface, and by accumulating the ip stress
component contributions to the x and y translational equilibria up to
the desired z sampling height, see Fig. 2.5. We hence obtain

τzx(z) = −
∫ z

−h
2
+o

∂σx
∂x

+
∂τxy
∂y

dz =

∫ +o+h
2

z

∂σx
∂x

+
∂τxy
∂y

dz (2.25)

τyz(z) = −
∫ z

−h
2
+o

∂τxy
∂x

+
∂σy
∂y

dz =

∫ +o+h
2

z

∂τxy
∂x

+
∂σy
∂y

dz. (2.26)

The parallel is evident with the Jourawsky shear theory for beams.
A complete form for the constitutive equations for the (oop) shear-

deformable plate may be finally cast as




q

m
q z


 =




a b 0

bT c 0

0 0 Γ






e
κ
γ z


 (2.27)

where the null, uncoupling minors are again due to the assumed mate-
rial pointwise elastic symmetry with respect to the ⊥ z plane.

2.1.6 Hooke’s law for the orthotropic lamina

Hooke’s law for the orthotropic material ip stress conditions, with re-
spect to principal axes of orthotropy;

D 123 =




E1
1−ν12ν21

ν21E1
1−ν12ν21 0

ν12E2
1−ν12ν21

E2
1−ν12ν21 0

0 0 G12


 (2.28)



σ1
σ2
τ12


 = T 1



σx
σy
τxy







ϵ1
ϵ2
γ12


 = T 2




ϵx
ϵy
γxy


 (2.29)
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qzx

qzx
mx +

∂mx

∂x︸ ︷︷ ︸
=qzx

dx

mx

σx + ∂σx

∂x dx
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σx

τzx(z)z
o+ h
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(a)

Figure 2.5: à la Jourawski approach for determining the pointwise
τzx(z) stress component from the qzx resultant. In deriving the σx
stress distribution, along with its ∂σx

∂x grow rate, curvature compo-
nents other than κx are assumed zero, thus mimicking the cylindrical
bending condition proper of a transversely infinite plate; also, the τxy
are assumed constant in y, and their contribution to the x translational
equilibrium is cumulatively zero.
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where

T 1 =




m2 n2 2mn
n2 m2 −2mn

−mn mn m2 − n2


 (2.30)

T 2 =




m2 n2 mn
n2 m2 −mn

−2mn 2mn m2 − n2


 (2.31)

α is the angle between 1 and x;

m = cos(α) n = sin(α) (2.32)

The inverse transformations may be obtained based on the relations

T−11 (+α) = T 1(−α) T−12 (+α) = T 2(−α) (2.33)

Finally

σ = D ϵ D ≡ D xyz = T−11 D 123T 2 (2.34)

With regard to the transverse shear constitutive relation, in the
case of an orthotropic material whose oop shear moduli are Gz1 and
G2z we have

G =

[
n2Gz1 +m2G2z mnGz1 −mnG2z

mnGz1 −mnG2z m2Gz1 + n2G2z

]
.

2.1.7 An application: the four point bending test speci-
men.

The case of the four point bending test is considered, see Figure 2.6a,
with an isotropic and homogeneous specimen material. Specimen di-
mensions are defined as in Figure, where the b the specimen width is
taken as the relevant unit of length.

The width to length ratio of the specimen is less than unity, but far
from being negligible; a treatise according to the plate theory would
hence be more appropriate than the beam model which is usually pro-
posed by normative.

Such a test is based on the assumption that the bending moment –
a beam framework quantity – is constant along the gauge length, and
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equal to Fl; such a quantity equates the through-width (tw) integral
of the mx moment resultant, whose value is assumed tw constant and
equal to m∗x = Fl/b. The specimen curvature along the gauge length
is

k∗x =
12Fl

Ebh3
(2.35)

according to the beam theory; such a value is taken as a reference.
The treatise according to the plate theory is far less straightfor-

ward that its trivial beam counterpart, since e.g. we may consider the
two opposite extremal cases of i) unconstrained anticlastic secondary
curvature, or, equivalently, null my transverse (in the sense of tw, not
tt) moment resultant, and ii) cylindrical bending, i.e. null transverse
κy curvature. The membrane generalized stress/strain components are
zero, as the transverse shear terms along the gauge length. The mixed
moment resultant and curvature are zero in both the cases, since they
are null at the xz symmetry plane, and they are assumed tw con-
stant23. By applying the constitutive relations proper of the homo-
geneous, isotropic plates, we derive for the unconstrained anticlastic
curvature case i)

mx = m∗x my = 0 κx = k∗x κy = −νk∗x,

whereas for the cylindrical bending case ii) we have

mx = m∗x my = νm∗x κx =
(
1− ν2

)
k∗x κy = 0.

We then observe that the nonzero κy transverse curvature pre-
dicted by i) is inconsistent with the hypothesis of a full width line
contact at the supports, whose cylindrical surface is transversely flat;
the unconstrained anticlastic curvature confines the specimen contact
interaction with the inner supports to a point in correspondence of
the width midspan, whereas the outer supports touch the specimen
at its edges only. Such a tw inhomogeneous loading condition induces
contact actions which may effectively oppose the anticlastic curvature,
which locally appears not “unconstrained” anymore.

On the other hand, a my moment resultant which is predicted ac-
cording to cylindrical bending not to vanish at the specimen flanks

23the mixed moment resultantmxy is moreover expected to vanish at the specimen
flanks, in continuity with the free surface boundary condition (bc)
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is incompatible with the free surface boundary condition; continuity
conditions require in fact that a distributed moment external action is
applied at the specimen flanks, which apparently is not the case.

The actual response of the specimen in terms of moment resultants
and curvatures, as probed at its centroidal axis, is plotted in Fig. 2.6b
in the case of bilateral support condition, i.e. w = 0 and w = d at
the outer and inner indenters, respectively, being d displacement of the
inner, moving, support. The cylindrical bending solution ii) is observed
at the supports, whereas a progressive transition to the unconstrained
anticlastic curvature solution i) is observed while moving away from
those supported areas. In particular, the central portion of the gauge
length behaves consistently with i).

In Fig. 2.6c, the same quantities are reported in the actual case
of unilateral contact at supports, i.e. the Signorini conditions24 are
imposed which consist in

g(y) ≥ 0 (2.36)

f(y) ≥ 0 (2.37)

g(y) · f(y) = 0, (2.38)

where f(y) is the lineic contact force along the width, positive if com-
pressive, and g(y) is the gap between specimen and indenter, namely
g(y) = −w(y) and g(y) = w(y) − d at the outer and inner supports,
respectively.

According to this second model, supports are less effective in locally
imposing a null secondary curvature, thus extending the validity of the
unconstrained anticlastic curvature solution i) to most of the gauge
length.

2.1.8 Notes on membrane and flexural regimes, and thin
walled profiles

In the present paragraph a symmetric (if not uniform) material distri-
bution is assumed with respect to the profile midsurface, which acts as
reference surface, in order to have b = 0 and then a proper decoupling

24Those conditions consist in turn in a no compenetration inequality 2.36, in a no
tractive contact action inequality 2.37, and in the mutual local exclusion of nozero
gap and nonzero contact force, 2.38.
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Figure 2.6: The not-so-trivial four point bending case, where b is the
specimen out-of-sketch-plane width (we might call it depth). Moment
fluxes and curvatures are sampled at the specimen midwidth, whereas
they may vary while moving towards the flanks; the average value of
mx along the width must in fact coincide with m∗x in correspondence
with the load span.
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between the membrane – i.e. tt uniform,
{
e , q

}
dominated – strain

regime, and the flexural – i.e. linear in z, {m , κ } dominated – strain
regime.

The two regimes exhibit characteristic behaviors in terms of strain
magnitude variation while updating the h wall thickness – and the
material distribution consistently – at design stage.

In particular, if the walls of a thin-walled part are subject to a
purely membrane regime, and the thicknesses are all scaled by a com-
mon λ factor while holding the midsurface fixed, the part stiffness (i.e.
the full set of relevant load/deflection ratios) grows linearly with λ;
on the other hand, if the part’s walls are subject to a purely flexural
regime, the part stiffness grows with the third power of λ.

From the strain magnitude variation point of view, two extremal
loadcases are considered.

According to the first loadcase – named imposed load condition, the
loads applied to the part (forces, moments, pressures..) are assumed
as invariant with the part stiffness, as in the case they are applied by
external load-controlled devices; also, the strain energy decreases with
the inverse of an increasing part stiffness.

According to the second loadcase – named imposed displacement
condition – the part is globally stretched by a fixed amount, which
is invariant with the part stiffness, as in the case of displacement-
controlled loading devices. In this loadcase, the loads applied to the
part grow consistently with the part stiffness, in order to reach the given
deflections; also, the strain increases linearly with the part stiffness.

This is also the case of a not directly loaded deformable subframe,
that is attached to a relatively stiff, autonomously load bearing main
frame; ideally, the subframe accomodates for the displacement of its
attachment points, while the main deflects under load.

If the part walls are subject to a purely membrane regime, the
strain magnitude is inversely proportional to the wall thickness under
imposed-load conditions, whereas they are invariant with the thickness
under imposed-displacement (and hence imposed membrane stretch-
ing) conditions. In the case of a purely flexural regime, the strain
magnitude is inversely proportional to the square of the wall thick-
ness under imposed-load conditions, whereas it paradoxically increases
with the thickness under imposed-displacement (and hence immposed
curvatures) conditions.
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regime membrane flexural

stiffness ∝ h1 ∝ h3

strain mag., imp.-load ∝ h−1 ∝ h−2

strain mag., imp.-disp.s ∝ h0 ∝ h1

Table 2.1: XXX

See also the summarizing Table 2.1.
With reference to thin walled profiles, the profile wall undergoes

a substantially membrane strain regime when loaded by the symmet-
ric components of internal action, namely axial load and flexural mo-
ments, and also when shear loads are applied, in accordance with the
Jourawsky theory.

In the case of torsion, closed thin-walled (ctw) profiles still exhibit
a membrane strain regime along the profile walls, whereas the flexu-
ral strain distribution is characteristic of the twisted open thin-walled
(otw) profiles, according to the De Saint Venant torsion theory. The
axial stretching further induced by the retained warping according to
the Vlasov theory of torsion, follows the membrane regime.

The flexural regime may also be produced by concentrated actions
that locally deflect the profile walls, see e.g. Fig. 2.7 joint, and by the
development of local plate buckling modes at the axially compressed
portion of profile walls, or in shear panels along the compressed diago-
nal; in particular, local buckling critical loads are ruled by the c minor
of the plate constitutive matrix, and they hence scale with the third
power of the wall thickness.

2.1.9 Final Notes.

A few sparse notes:

� If the unsymmetric laminate is composed by isotropic layers, a
reference plane may be obtained for which the b membrane-to-
bending coupling matrix vanishes; a similar condition may not
be verified in the presence of orthotropic layers.

� Thermally induced distortion is not self-compensated in an un-
symmetric laminate even if the temperature is held constant
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Figure 2.7: FIXME

through the thickness. Such fact, united to the unavoidable ther-
mal cycles that occurs during manufacturing if not during oper-
ation, makes such configurations pretty undesirable.
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2.2 Preliminary results

2.2.1 Interpolation functions for the quadrilateral do-
main

The elementary quadrilateral domain. A quadrilateral domain
is considered whose vertices are conventionally located at the (±1,±1)
points of an adimensional (ξ, η) plane coordinate system, see Figure
2.10. Scalar values fi are associated to a set of nodal points Pi ≡
[ξi, ηi], which for the present case coincide with the quadrangle vertices,
numbered as in Figure.

A f(ξ, η) interpolation function may be devised by defining a set
of nodal influence functions Ni(ξ, η) to be employed as the coefficients
(weights) of a moving weighted average

f(ξ, η)
def
=
∑

i

Ni(ξ, η)fi (2.39)

Requisites for such weight functions are:

� for each point of the domain, the sum of the weights is unitary

∑

i

Ni(ξ, η) = 1, ∀[ξ, η] (2.40)

� to grant continuity of the f(ξ, η) function with the nodal samples,
the influence of a node is unitary at its location, whereas the
influence of the others vanishes there, i.e.

Ni(ξj , ηj) = δij (2.41)

where δij is the Kronecker delta function.

Moreover, suitable functions should be continuous and straightfor-
wardly differentiable up to any required degree.

Low order polynomials are ideal candidates for the application; for
the particular domain, the nodal weight functions may be stated as

Ni(ξ, η)
def
=

1

4
(1± ξ) (1± η) , (2.42)
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where sign ambiguity is resolved25 for each i-th node by enforcing Eqn.
2.41.

The bilinear interpolation function defined by Eqs. 2.39 and 2.42
turns into a general linear relation with (ξ, η) if the four sample points
(ξi, ηi, fi) are coplanar – but otherwise arbitrary – in the ξ, η, f space.

Further generality may be introduced by not enforcing coplanarity.
The weight functions for the four-node quadrilateral are in fact

quadratic although incomplete26 in nature, due to the presence of the
ξη product, and the absence of any ξ2, η2 term.

Each Ni(ξ, η) term, and the combined f(ξ, η) function, defined as
in Eqn. 2.39, behave linearly if restricted to ξ = const. or η = const.
loci – and in particular along the four edges; quadratic behaviour may
instead arise along a general direction, e.g. along the diagonals, as in
Fig. 2.10b example. Such behaviour is called bilinear.

We now consider the f(ξ, η) interpolation function partial deriva-
tives. The partial derivative

∂f

∂ξ
=

(
f2 − f1

2

)

︸ ︷︷ ︸
[∆f/∆ξ]12

(
1− η

2

)

︸ ︷︷ ︸
N1+N2

+

(
f3 − f4

2

)

︸ ︷︷ ︸
[∆f/∆ξ]43

(
1 + η

2

)

︸ ︷︷ ︸
N4+N3

= aη + b (2.43)

linearly varies in η from the incremental ratio value measured at the
η = −1 lower edge, to the value measured at the η = 1 upper edge; the
other partial derivative

∂f

∂η
=

(
f4 − f1

2

)(
1− ξ

2

)
+

(
f3 − f2

2

)(
1 + ξ

2

)
= cξ + d. (2.44)

behaves similarly, with c = a. Partial derivatives in ξ, η remain con-
stant while moving along the corresponding differentiation direction27.

25the formula may be alternatively cast in the definite form

Ni(ξ, η)
def
=

1

4
(1 + ξξi) (1 + ηηi) ,

where ξi, ηi are the coordinates of the i-th node.
26or, equivalently, enriched linear, as discussed above and in the following
27The relevance of such partial derivative orders will appear clearer to the reader

once the strain field will have been derived in paragraph XXX.
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An equivalent expression for Eq. 2.39 is the following

f(ξ, η) =
[
N1(ξ, η) · · · Ni(ξ, η) · · · Nn(ξ, η)

]




f1
...
fi
...
fn




= N(ξ, η) f , (2.45)

which resorts to the inner mechanics of the matrix-vector product for
performing the summation; the f vector collects the function nodal
values, whereas the N (ξ, η) weigth function row matrix collects their
influence coefficient at the provided (ξ, η) location.

The general planar quadrilateral domain. The interpolation func-
tions introduced above for the natural quadrilateral may be profitably
employed in defining a coordinate mapping between a general quad-
rangular domain – see Fig. 2.11a – and its reference counterpart, see
Figures 2.10 or 2.11b.

In particular, we first define the ξ i 7→ x i coordinate mapping for
the four vertices28 alone, where ξ, η are the reference (or natural, or
elementary) coordinates and x, y are their physical counterpart.

Then, a mapping for the inner points may be derived by interpola-
tion, namely

x
(
ξ
)
= m

(
ξ
)
=

4∑

i=1

Ni

(
ξ
)
x i, (2.46)

or, by expliciting the m ≡ x components,

m
(
ξ
)
=

[
x(ξ, η)
y(ξ, η)

]

with

x(ξ, η) =
4∑

i=1

Ni(ξ, η)xi y(ξ, η) =
4∑

i=1

Ni(ξ, η)yi.

28The condensed notation ξ i ≡ (ξi, ηi), x i ≡ (xi, yi) for coordinate vectors is
employed.
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In the employed notation, the parametric dependence of the m (ξ, η)
mapping on the nodal coordinates is not explicit, but clearly unavoid-
able; the complete notation m (ξ, η; x i) might be alternatively em-
ployed, where x i is a placeholder for the physical coordinates of each
node.

The availability of an inverse m−1 : x 7→ ξ mapping is not
granted; in particular, a closed form representation for such inverse
is not generally available29.

In the absence of an handy inverse mapping function, it is conve-
nient to reinstate the interpolation procedure obtained for the natural
domain, i.e.

f(ξ, η)
def
=
∑

i

Ni(ξ, η)fi (2.47)

The four fi nodal values are interpolated based on the natural ξ, η
coordinates of an inner P point, and not as a function of its physical
x, y coordinates, that are never promoted to the independent variable
role.

The interpolation scheme behind the m mapping – and the map-
ping itself – behaves linearly along η =const. and ξ =const. one di-
mensional subdomains, and in particular along the quadrangle edges30;
the inverse mapping m−1 exists and it is a linear function31 along the
image of those line segments on the physical plane, under the further

29Inverse relations are derived in [6], which however are case-defined and based on
a selection table; for a given x̄ physical point, however, Newton-Raphson iterations
rapidly converge to the ξ̄ = m−1 ( x̄ ) solution if the centroid is chosen for algorithm
initialization, see Section XXX

30see paragraph XXX
31A constructive proof may be defined for each edge as follows. We consider a

generic Q point along such edge whose physical coordinates are (xQ, yQ). Of the
two natural coordinates of Q, one is trivial to be derived since its value is constant
along the edge. The other, for which we employ the λ placeholder symbol, may be
defined through the expression

λ = 2
(xQ − xi)(xj − xi) + (yQ − yi)(yj − yi)

(xj − xi)2 + (yj − yi)2
− 1,

where i,j are the two subdomain endpoints at which λ equates −1 and +1, respec-
tively, and (xi, yi), (xj , yj) the associated physical coordinates. A similar function
may be defined for any segment for which either ξ or η is constant, and not only for
the quadrangle edges. Please note that the above inverse mapping formula is not
applicable iif the segment physical length at the denominator is zero.
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condition that its length is nonzero32. Being a composition of linear
functions, the interpolation function f(m−1(x, y)) is also linear along
the aforementioned subdomains, and in particular along the quadran-
gle edges.

The directional derivatives of f with respect to x or y are obtained
based the indirect relation

[
∂f
∂ξ
∂f
∂η

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]

︸ ︷︷ ︸
J⊤(ξ,η; x i)

[
∂f
∂x
∂f
∂y

]
(2.48)

The function derivatives with respect to ξ, η are obtained as
[
∂f
∂ξ
∂f
∂η

]
=
∑

i

[
∂Ni
∂ξ
∂Ni
∂η

]
fi. (2.49)

The transposed Jacobian matrix of the mapping function that appears
in 2.48 is

J ⊤(ξ, η) =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(2.50)

=
∑

i

([
∂Ni
∂ξ 0
∂Ni
∂η 0

]
xi +

[
0 ∂Ni

∂ξ

0 ∂Ni
∂η

]
yi

)
(2.51)

If the latter matrix is assumed nonsingular – condition, this, that
pairs the bijective nature of the m mapping, equation 2.48 may be
inverted, thus leading to the form

[
∂f
∂x
∂f
∂y

]
=
(
J ⊤
)−1

[
. . . ∂Ni

∂ξ . . .

. . . ∂Ni
∂η . . .

]



...
fi
...


 (2.52)

=
(
J ⊤
)−1

[
∂N
∂ξ
∂N
∂η

]

︸ ︷︷ ︸
L (ξ,η; x i), or just L (ξ,η)

f (2.53)

32The case exists of an edge whose endpoints are superposed, i.e. the edge col-
lapses to a point.
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where the inner mechanics of the matrix-vector product are appointed
for the Eq. 2.49 summation; the differential operator L (ξ, η; x i) –
or just L (ξ, η) if, again, we disregard its parametric dependence on
the nodal coordinates – is also defined that extract the x, y directional
derivatives of the interpolation function from its nodal values.

The general spatial quadrilateral domain. TODO.

2.2.2 Gaussian quadrature rules for some relevant do-
mains.

Reference one dimensional domain. The gaussian quadrature
rule for approximating the definite integral of a f(ξ) function over
the [−1, 1] reference interval is constructed as the customary weighted
sum of internal function samples, namely

∫ 1

−1
f(ξ)dξ ≈

n∑

i=1

f(ξi)wi; (2.54)

Its peculiarity is to employ location-weight pairs (ξi, wi) that are
optimal with respect to the polynomial class of functions. Nevertheless,
such choice has revealed itself robust enough for for a more general
employment.

Let’s consider a m-th order polynomial

p(ξ)
def
= amξ

m + am−1ξ
m−1 + . . .+ a1ξ + a0

whose exact integral is

∫ 1

−1
p(ξ)dξ =

m∑

j=0

(−1)j + 1

j + 1
aj

The integration residual between the exact definite integral and the
weighted sample sum is defined as

r (aj , (ξi, wi))
def
=

n∑

i=1

p(ξi)wi −
∫ 1

−1
p(ξ)dξ (2.55)

The optimality condition is stated as follows: the quadrature rule
involving n sample points (ξi, wi), i = 1 . . . n is optimal for the m-
th order polynomial if a) the integration residual is null for general
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aj values , and b) such condition does not hold for any lower-order
sampling rule.

Once observed that the zero residual requirement is satisfied by any
sampling rule when the aj polynomial coefficients are all null, condition
a) may be enforced by imposing that such zero residual value remains
constant with varying aj terms, i.e.

{
∂r (aj , (ξi, wi))

∂aj
= 0, j = 0 . . .m (2.56)

A system of m + 1 polynomial equations of degree33 m + 1 is hence
obtained in the 2n (ξi, wi) unknowns; in the assumed absence of redun-
dant equations, solutions do not exist if the constraints outnumber the
unknowns, i.e. m > 2n − 1. Limiting our discussion to the threshold
condition m = 2n − 1, an attentive algebraic manipulation of Eqns.
2.56 may be performed in order to extract the (ξi, wi) solutions, which
are unique apart from the pair permutations34.

Eqns. 2.56 solutions are reported in Table 2.2 for quadrature rules

33the (m+ 1)-th order wmξm term appears in equations
34In this note, location-weight pairs are obtained for the gaussian quadrature

rule of order n = 2, aiming at illustrating the general procedure. The general
m = 2n− 1 = 3rd order polynomial is stated in the form

p(ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0,

∫ 1

−1

p(ξ)dξ =
2

3
a2 + 2a0,

whereas the integral residual is

r = a3

(
w1ξ

3
1 + w2ξ

3
2

)
+a2

(
w1ξ

2
1 + w2ξ

2
2 − 2

3

)
+a1 (w1ξ1 + w2ξ2)+a0 (w1 + w2 − 2)

Eqns 2.56 may be derived as
0 = ∂r

∂a3
= w1ξ

3
1 + w2ξ

3
2 (e1)

0 = ∂r
∂a2

= w1ξ
2
1 + w2ξ

2
2 − 2

3
(e2)

0 = ∂r
∂a1

= w1ξ1 + w2ξ2 (e3)

0 = ∂r
∂a0

= w1 + w2 − 2 (e4)

which are independent of the aj coefficients.
By composing

(
e1 − ξ21e3

)
/(w2ξ2) it is obtained that ξ22 = ξ21 ; e2 may then be

written as (w1 + w2)ξ
2
1 = 2/3, and then as 2ξ21 = 2/3, according to e4. It derives

that ξ1,2 = ±1/
√
3. Due to the opposite nature of the roots, e3 implies w2 = w1,

relation, this, that turns e4 into 2w1 = 2w2 = 2, and hence w1,2 = 1 .
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n ξi wi

1 0 2

2 ± 1√
3

1

3
0 8

9

±
√

3
5

5
9

4
±
√

3
7 − 2

7

√
6
5

18+
√
30

36

±
√

3
7 + 2

7

√
6
5

18−
√
30

36

Table 2.2: Integration points for the lower order gaussian quadrature
rules.

with up to n = 4 sample points35.
It is noted that the integration points are symmetrically distributed

with respect to the origin, and that the function is never sampled at
the {−1, 1} extremal points.

General one dimensional domain. The extension of the one di-
mensional quadrature rule from the reference domain [−1, 1] to a gen-
eral [a, b] domain is pretty straightforward, requiring just a change of
integration variable – i.e. a mapping function x = m(ξ) s.t. a = m(−1)
and b = m(1) – to obtain the following

∫ b

a
g(x)dx =

∫ 1

−1
g (m(ξ))

dm

dξ
dξ ≈

n∑

i=1

g (m(ξi))
dm

dξ

∣∣∣∣
ξ=ξi

wi. (2.57)

Such a mapping function may be conveniently defined along the same
lines as the weight (or shape) function based interpolation, thus ob-
taining

m(x) =

(
1− ξ

2

)

︸ ︷︷ ︸
N1

a+

(
1 + ξ

2

)

︸ ︷︷ ︸
N2

b.

35see https://pomax.github.io/bezierinfo/legendre-gauss.html for higher
order gaussian quadrature rule sample points.
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The first order derivative may be evaluated as

dm

dξ
=
dN1

dξ
a+

dN2

dξ
b =

b− a

2

and it is constant along the interval, so that it may be collected outside
of the summation, thus leading to

∫ b

a
g(x)dx ≈ b− a

2

n∑

i=1

g

(
b+ a

2
+
b− a

2
ξi

)
wi. (2.58)

Reference quadrangular domain. A quadrature rule for the ref-
erence quadrangular domain of Figure 2.10a may be derived by nesting
the quadrature rule defined for the reference interval, see Eqn. 2.54,
thus obtaining

∫ 1

−1

∫ 1

−1
f (ξ, η) dξdη ≈

p∑

i=1

q∑

j=1

f (ξi, ηj)wiwj (2.59)

where (ξi, wi) and (ηj , wj) are the coordinate-weight pairs of the two
quadrature rules of p and q order, respectively, employed for spanning
the two coordinate axes. The equivalent notation

∫ 1

−1

∫ 1

−1
f (ξ, η) dξdη ≈

pq∑

l=1

f
(
ξ l
)
wl (2.60)

emphasises the characteristic nature of the pq point/weight pairs for
the domain and for the quadrature rule employed; a general integer
bijection36 {1 . . . pq} ↔ {1 . . . p} × {1 . . . q}, l ↔ (i, j) may be utilized
to formally derive the two-dimensional quadrature rule pairs

ξ l = (ξi, ηj) , wl = wiwj , l = 1 . . . pq (2.61)

from their uniaxial counterparts.

36e.g.

{i− 1; j − 1} = (l − 1) mod (p, q), l − 1 = (j − 1)q + (i− 1)

where the operator

{an; . . . ; a3; a2; a1} = mmod (bn, . . . , b3, b2, b1)

consists in the extraction of the n least significant ai digits of a mixed radix repre-
sentation of the integer m with respect to the sequence of bi bases, with i = 1 . . . n.
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General quadrangular domain. The rectangular infinitesimal area
dAξη = dξdη in the neighborhood of a ξP , ηP location, see Figure 2.11b,
is mapped to the dAxy quadrangle of Figure 2.11a, which is composed
by the two triangular areas

dAxy =
1

2!

∣∣∣∣∣∣

1 x (ξP , ηP ) y (ξP , ηP )
1 x (ξP + dξ, ηP ) y (ξP + dξ, ηP )
1 x (ξP + dξ, ηP + dη) y (ξP + dξ, ηP + dη)

∣∣∣∣∣∣
+

+
1

2!

∣∣∣∣∣∣

1 x (ξP + dξ, ηP + dη) y (ξP + dξ, ηP + dη)
1 x (ξP , ηP + dη) y (ξP , ηP + dη)
1 x (ξP , ηP ) y (ξP , ηP )

∣∣∣∣∣∣
. (2.62)

The determinant formula for the area of a triangle, shown below along
with its n-dimensional symplex hypervolume generalization,

A =
1

2!

∣∣∣∣∣∣

1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣
, H =

1

n!

∣∣∣∣∣∣∣∣∣

1 x 1

1 x 2
...

...
1 x n+1

∣∣∣∣∣∣∣∣∣
(2.63)

has been employed above37.
By operating a local multivariate linearization of the 2.62 matrix

terms, the relation

dAxy ≈
1

2!

∣∣∣∣∣∣

1 x y
1 x+ x,ξdξ y + y,ξdξ
1 x+ x,ξdξ + x,ηdη y + y,ξdξ + y,ηdη

∣∣∣∣∣∣
+

+
1

2!

∣∣∣∣∣∣

1 x+ x,ξdξ + x,ηdη y + y,ξdξ + y,ηdη
1 x+ x,ηdη y + y,ηdη
1 x y

∣∣∣∣∣∣

is obtained, where x, y, x,ξ, x,η, y,ξ, and y,η are the x, y functions and
their first order partial derivatives, evaluated at the (ξP , ηP ) point;
infinitesimal terms of order higher than dξ, dη are neglected.

37A direct formula for the area of the polygon given the vertex coordinates is also
available, see https://en.wikipedia.org/wiki/Shoelace_formula
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After some matrix manipulations38, the following expression is ob-
tained

dAxy =

∣∣∣∣
x,ξ y,ξ
x,η y,η

∣∣∣∣
︸ ︷︷ ︸

|JT(ξP ,ηP ; x , y )|

dAξη (2.64)

that equates the ratio of the mapped and of the reference areas to the
determinant of the transformation (transpose) Jacobian matrix39.

After the preparatory passages above, we obtain

∫∫

Axy

g(x, y)dAxy =

∫ 1

−1

∫ 1

−1
g (x (ξ, η) , y (ξ, η)) |J(ξ, η)| dξdη, (2.65)

thus reducing the quadrature over a general domain to its reference
domain counterpart, which has been discussed in the paragraph above.

Based on Eqn. 2.60, the quadrature rule

∫∫

Axy

g( x )dAxy ≈
pq∑

l=1

g
(
x
(
ξ l
)) ∣∣J( ξ l)

∣∣wl (2.66)

38In the first determinant, the second row is subtracted from the third one, and the
first row is subtracted from the second one. The dξ, dη factors are then collected
from the second and the third row respectively. In the second determinant, the
second row is subtracted from the first one, and the third row is subtracted from
the second one. The dξ, dη factors are then collected from the first and the second
row respectively. We now have

dAxy =
1

2

∣∣∣∣∣∣
1 x y
0 x,ξ y,ξ
0 x,η y,η

∣∣∣∣∣∣ dξdη +
1

2

∣∣∣∣∣∣
0 x,ξ y,ξ
0 x,η y,η
1 x y

∣∣∣∣∣∣ dξdη
The first column of both the determinants contains a single, unitary, nonzero term,
whose row and column indexes are even once added up; the determinants of the
associated complementary minors hence equate their whole matrix counterpart. We
hence obtain

dAxy =
1

2

∣∣∣∣x,ξ y,ξ
x,η y,η

∣∣∣∣ dξdη +
1

2

∣∣∣∣x,ξ y,ξ
x,η y,η

∣∣∣∣ dξdη
from which Eq.2.64 may be straightforwardly derived.

39The Jacobian matrix for a general ξ 7→ x mapping is in fact defined according
to

[J( ξ P )]ij
def
=

∂xi

∂ξj

∣∣∣∣
ξ= ξ P

i, j = 1 . . . n

being i the generic matrix term row index, and j the column index
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is derived, stating that the definite integral of a g integrand over a
quadrangular domain pertaining to the physical x, y plane (x, y are di-
mensional quantities, namely lengths) may be approximated as follows:

1. a reference-to-physical domain mapping is defined, that is based
on the vertex physical coordinate interpolation;

2. the function is sampled at the physical locations that are the
images of the Gaussian integration points previously obtained
for the reference domain;

3. a weighted sum of the collected samples is performed, where the
weights consist in the product of i) the adimensional wl Gauss
point weight (suitable for integrating on the reference domain),
and ii) a dimensional area scaling term, that equals the determi-
nant of the transformation Jacobian matrix, locally evaluated at
the Gauss points.

General, spatial quadrangular domain. TODO... but, in the
meantime

dAxyz =

√∣∣∣∣
x,ξ x,η
y,ξ y,η

∣∣∣∣
2

+

∣∣∣∣
y,ξ y,η
z,ξ z,η

∣∣∣∣
2

+

∣∣∣∣
z,ξ z,η
x,ξ x,η

∣∣∣∣
2

dξdη (2.67)

L (ξ, η; x i) ≈ ... (2.68)
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2.3 The bilinear isoparametric shear-deformable
shell element

This is a four-node, thick-shell element with global displace-
ments and rotations as degrees of freedom. Bilinear inter-
polation is used for the coordinates, displacements and the
rotations. The membrane strains are obtained from the
displacement field; the curvatures from the rotation field.
The transverse shear strains are calculated at the middle
of the edges and interpolated to the integration points. In
this way, a very efficient and simple element is obtained
which exhibits correct behavior in the limiting case of thin
shells. The element can be used in curved shell analysis
as well as in the analysis of complicated plate structures.
For the latter case, the element is easy to use since connec-
tions between intersecting plates can be modeled without
tying. Due to its simple formulation when compared to the
standard higher order shell elements, it is less expensive
and, therefore, very attractive in nonlinear analysis. The
element is not very sensitive to distortion, particularly if
the corner nodes lie in the same plane. All constitutive
relations can be used with this element.

— MSC.Marc 2013.1 Documentation, vol. B, Element library.

2.3.1 Element geometry

Once introduced the required algebraic paraphernalia, the definition of
a quadrilateral bilinear isoparametric shear-deformable shell element is
straightforward.

The quadrilateral element geometry is defined by the position in
space of its four vertices, which constitute the set of nodal points, or
nodes, i.e. the set of locations at which field components are primarily,
parametrically, defined; interpolation is employed in deriving the field
values elsewhere.

A suitable interpolation scheme, named bilinear, has been intro-
duced in paragraph 2.2.1; the related functions depend on the normal-
ized coordinate pair ξ, η ∈ [−1, 1] that spans the elementary quadrilat-
eral of Figure 2.10.
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A global reference system OXY Z is employed for concurrently deal-
ing with multiple elements (i.e. at a whole model scale); a more conve-
nient, local Cxyz reference system, z being locally normal to the shell,
is used when a single element is under scrutiny – e.g. in the current
paragraph.

Nodal coordinates define the element initial, undeformed, geome-
try40, or, alternatively, the portion of thin-walled body reference sur-
face that pertains to the current element; physical, spatial coordinates
for each other element point may be retrieved by interpolation based
on the associated pair of natural ξ, η coordinates, namely



X(ξ, η)
Y (ξ, η)
Z(ξ, η)


 =

n∑

i=1

Ni(ξ, η)



Xi

Yi
Zi


 ,



x(ξ, η)
y(ξ, η)
z(ξ, η)


 =

n∑

i=1

Ni(ξ, η)



xi
yi
zi




(2.69)

with reference to both the global and the local systems.
In particular, the C centroid is the image within the physical space

of the ξ = 0, η = 0 natural coordinate system origin.
The in-plane orientation of the local Cxyz reference system is some-

what arbitrary and implementation-specific; the MSC.Marc approach
is used as an example, and it is described in the following. The in-plane
x, y axes are tentatively defined41 based on the physical directions that
are associated with the ξ, η natural axes, i.e. the oriented segments
spanning a) from the midpoint of the n4-n1 edge to the midpoint of
the n2-n3 edge, and b) from the midpoint of the n1-n2 edge to the
midpoint of the n3-n4 edge, respectively; however, these two tentative
axes are not mutually orthogonal in general. The mutual Cxy angle is
then amended by rotating those interim axes with respect to a third,
binormal axis Cz, while preserving their initial bisectrix.

40They are however continuosly updated within most common nonlinear analysis
frameworks, where initial usually refers to the last computed, aka previous step of
an iterative scheme.

41The MSC.Marc element library documentation defines them as a normalized
form of the (

∂X

∂ξ
,
∂Y

∂ξ
,
∂Z

∂ξ
,

)∣∣∣∣
ξ=0,η=0

,

(
∂X

∂η
,
∂Y

∂η
,
∂Z

∂η
,

)∣∣∣∣
ξ=0,η=0

,

vectors, which are evaluated at the centroid. The two definitions may be proved
equivalent based on the bilinear interpolation properties.
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The resulting quadrilateral shell element has limited capabilities of
representing a curve surface; it is in fact flat, apart from a (suggest-
edly limited) anticlastic curvature of the element diagonals, which is
associated to the quadratic ξη term of the interpolation functions. It
is e.g. not capable of representing a single curvature surface.

The curve nature of a thin-walled body midsurface may thus be re-
produced by recurring to a tessellation of essentially flat, but mutually
angled elements.

2.3.2 Displacement and rotation fields

The element degrees of freedom consist in the displacements and the
rotations of the four quadrilateral vertices, i.e. nodes.

By interpolating the nodal values, displacement and rotation func-
tions may be derived along the element as



u(ξ, η)
v(ξ, η)
w(ξ, η)


 =

4∑

i=1

Ni(ξ, η)



ui
vi
wi


 (2.70)



θ(ξ, η)
ϕ(ξ, η)
ψ(ξ, η)


 =

4∑

i=1

Ni(ξ, η)



θi
ϕi
ψi


 (2.71)

with i = 1 . . . 4 cycling along the element nodes. If we collect the
element nodal dofs within the six column vectors

u =




...
ui
...


 v =




...
vi
...


 w =




...
wi
...




θ =




...
θi
...


 ϕ =




...
ϕi
...


 ψ =




...
ψi
...




we may resort to compact notations in the form

u(ξ, η) = N (ξ, η) u v(ξ, η) = N (ξ, η) v

et cetera.
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Those column vectors are in turn stacked to form the cumulative

d ⊤ =
[
u ⊤ v ⊤ w ⊤ θ ⊤ ϕ ⊤ ψ ⊤

]
(2.72)

dof column vector for the title element.
The ψ vector associated with the drilling degree of freedom – i.e.

the rotation with respect to the normal z axis – is not omitted, although
its contribution to the element strain energy deserves some discussion,
see the dedicated paragraph below.

2.3.3 Strains

By recalling Eqn. 2.52, we have e.g.

[∂u
∂x
∂u
∂y

]
=
(
J ′
)−1

[
. . . ∂Ni

∂ξ . . .

. . . ∂Ni
∂η . . .

]

︸ ︷︷ ︸
L (ξ,η; x i) or just L (ξ,η)




...
ui
...


 (2.73)

for the x-oriented displacement component; the differential operator
L (ξ, η; x i), which extracts the x, y directional derivatives from the
nodal values of a given field component, is employed.

A block defined Q (ξ, η) matrix is thus obtained that cumulatively

relates the in-plane displacement component derivatives to the associ-
ated nodal values




∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y


 =

[
L (ξ, η) 0

0 L (ξ, η)

]

︸ ︷︷ ︸
Q(ξ,η)

[
u
v

]
(2.74)

An equivalent relation may then be obtained for the rotation field



∂θ
∂x
∂θ
∂y
∂ϕ
∂x
∂ϕ
∂y


 = Q(ξ, η)

[
θ
ϕ

]
(2.75)

By making use of two auxiliary matrices H ′ and H ′′ that collect
the {0,±1} coefficients in Eqns. 2.10 and 2.11, we obtain that the ip
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strain components at the reference surface, and the curvatures equate
respectively



ex
ey
gxy


 =



+1 0 0 0
0 0 0 +1
0 +1 +1 0




︸ ︷︷ ︸
H ′




∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y


 = H ′Q(ξ, η)

[
u
v

]
(2.76)



κx
κy
κxy


 =




0 0 +1 0
0 −1 0 0
−1 0 0 +1




︸ ︷︷ ︸
H ′′




∂θ
∂x
∂θ
∂y
∂ϕ
∂x
∂ϕ
∂y


 = H ′′Q(ξ, η)

[
θ
ϕ

]

(2.77)

or, by referring to the whole set of nodal dofs,

e =
[
H ′Q(ξ, η) 0 0 0 0

]

︸ ︷︷ ︸
B e(ξ,η)

d (2.78)

κ =
[
0 0 0 H ′′Q(ξ, η) 0

]

︸ ︷︷ ︸
B κ(ξ,η)

d . (2.79)

The B e and B κ matrices are block-defined by appending to the 3x8
blocks introduced in Eqn. 2.76 and 2.77, respectively, a suitable set of
3x4 null block placeholders.

The ip strain components at a generic ξ, η, z point along the element
thickness may then be derived according to Eqn. 2.12 as a (linear)
function of the nodal degrees of freedom

ϵ (ξ, η, z) =
(
B e(ξ, η) + zB κ(ξ, η)

)
d ; (2.80)

the oop shear strain components, as defined in Eqns. 2.4 and 2.5,
become instead

[
gzx
gyz

]
= L (ξ, η) w +

[
0 +N (ξ, η)

−N(ξ, η) 0

] [
θ
ϕ

]
, (2.81)
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and thus, by employing a notation consistent with ??,

[
gzx
gyz

]
=

[
0 0 L (ξ, η)

0
−N(ξ, η)

N (ξ, η)

0
0

]

︸ ︷︷ ︸
B γ(ξ,η)

d (2.82)

where the transformation matrix that derives the out-of-plane, inter-
laminar strains from the nodal degrees of freedom vector is constituted
by six 2× 4 blocks.

2.3.4 Stresses

In general, material constitutive laws are employed in deriving stress
components from their strain counterpart.

In the case of a shell element, the plane stress relations discussed
in Paragraph 2.1, see Eqns. 2.13, may be employed in deriving the
pointwise ip stress components from the associated strains.

Also, the plate constitutive laws reported as Eqns. 2.19 may be em-
ployed in deriving the tt force and moment ip stress resultants from the
generalized strains obtained in Eqns. 2.78, 2.79. The oop shear stress
resultants may be derived from the associated Eqns. 2.82 generalized
strains by resorting to Eq. 2.24.

2.3.5 The element stiffness matrix.

In this paragraph, the elastic behaviour of the finite element under
scrutiny is derived.

The element is considered in its deformed configuration, being

d ⊤ =
[
u ⊤ v ⊤ w ⊤ θ ⊤ ϕ ⊤ ψ ⊤

]
(2.83)

the dof vector associated with such condition.
A virtual displacement field perturbs such deformed configuration;

as usual, those virtual displacements are infinitesimal, they do occur
while time is held constant, and, being otherwise arbitrary, they respect
the existing kinematic constraints.

Whilst, in fact, no external constrains are applied to the element,
the motion of the pertaining material points is prescribed based on a)
the assumed plate kinematics, and b) on the bilinear, isoparametric
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1 2

4 5

3*

6*

7 8

9 10

11 12

13 14

rectangular plate element 2a · 2b, thickness h

x = aξ, y = bη, −h
2 ≤ z ≤ h

2

d

nodal displacements magnitude d,

Figure 2.12: Elementary modes for the four-noded Mindlin plate ele-
ment. The six rigid body modes, and the four pure drilling modes, are
framed in Figure. The pure κxy mixed curvature mode represented in
Fig. 2.3 is obtained as a combination of modes 6* and 7. The element
behaves as stiff for any motion that is not a linear combination of these
elementary modes.
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interpolation laws that propagate the generalized nodal displacements
δ d towards the quadrilateral’s interior.

Since the element is supposed to elastically react to such d de-
formed configuration, a set of external actions

G ⊤ =
[
U ⊤ V ⊤ W ⊤ Θ ⊤ Φ ⊤ Ψ ⊤

]
(2.84)

is applied at nodes42 – one each dof, that equilibrate the stretched
element reactions.

The nature of each G generalized force component is defined based
on the nature of the associated generalized displacement, such that the
overall virtual work they perform on any δ d motion is

δΥe = δ d ⊤G . (2.85)

Let’s now consider the internal virtual work produced by the same
δ d displacements.

The ip stress components that are induced by the d generalized
displacements equal

σ = D(z)
(
B e(ξ, η) + B κ(ξ, η)z

)
d (2.86)

according to the previous paragraphs,and they perform [volumic den-
sity of] internal work on the

δ ϵ =
(
B e(ξ, η) + B κ(ξ, η)z

)
δ d (2.87)

virtual elongations.
Similar considerations may be assessed with reference to the plate

theory framework; in particular, the internal action stress and moment
resultants may be derived from the element dof as

q =
(
a B e(ξ, η) + b B κ(ξ, η)

)
d (2.88)

m =
(
b ⊤B e(ξ, η) + c B κ(ξ, η)

)
d , (2.89)

and they perform [surficial density of] virtual work on the virtual vari-
ation of the generalized strain components

δ e = B e(ξ, η) δ d (2.90)

δ κ = B κ(ξ, η) δ d , (2.91)

42There is no lack of generality in assuming the equilibrating external actions
applied at dofs only, as discussed in Par. XXX below.
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The associated internal virtual work may be derived by integra-
tion along the element volume, i.e. along the thickness, and along the
quadrilateral portion of reference surface that pertains to the element.
We thus obtain a first contribution to the overall internal virtual work

δΥ†i =

∫∫

A

∫

h
δ ϵ ⊤ σ dzdA

=

∫∫

A

∫

h

((
B e + B κz

)
δ d
)⊤

D
(
B e + B κz

)
d dzdA

= δ d ⊤
[∫∫

A

∫

h

(
B ⊤e + B ⊤κz

)
D
(
B e + B κz

)
dzdA

]
d

= δ d ⊤K † d , (2.92)

which may equivalently be expressed based on the plate/laminate con-
stitutive matrix minors as

δΥ†i =

∫∫

A

(
δ e ⊤ q + δ κ ⊤m

)
dA

= δ d ⊤

[∫∫

A

[
B e

B κ

]⊤ [
a b

bT c

] [
B e

B κ

]
dA
]
d

= δ d ⊤K † d , (2.93)

since we recall that

{
a , b , c

}
=

∫

h
D
{
1, z, z2

}
dz,

and that the B {e,κ} matrices are constant in z.
Integration along i) the reference surface, and ii) along the thickness

is numerically performed through potentially distinct quadrature rules;
in particular, contributions are collected along the surface according
to the two points per axis (four points overall) Gaussian quadrature
formula introduced in Par. 2.2.2, whilst a (composite) Simpson rule is
applied in z, being each material layer sampled at its outer and middle
points. In general, any volume integral along the element, i.e.

∫∫∫

Ω
g(ξ, η, x, y, z)dΩ = (2.94)

=

∫ +1

−1

∫ +1

−1

∫ +h
2
+o

−h
2
+o

g(ξ, η, x(ξ, η), y(ξ, η), z)dz
∣∣ J (ξ, η)

∣∣ dξdη,
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where g is a generic function of the isoparametric or physical coordi-
nates, will be numerically performed according to such scheme.

the outer integrals in the isoparametric coordinates (ξ, η) are eval-
uated according to the usual two points per axis gaussian quadrature
rule, whereas a [composite] Simpson rule is employed along the tt co-
ordinate z.

The two points per axis quadrature rule is the lowest order rule that
returns an exact integral evaluation in the case of distortion-free43 ele-
ments, i.e. planar elements whose peculiar (parallelogram) shape also
determines a linear (vs. bilinear) isoparametric mapping. Since the
associated Jacobian matrix is constant with respect to ξ, η, the L ma-
trix defined in 2.73 linearly varies with such isoparametric coordinates,
and so do the B e, B κ matrices. The integrand of Eqn. 2.92 is thus a
quadratic function of the ξ, η integration variables, as the Jacobian ma-
trix determinant that scales the physical and the natural infinitesimal
areas, see Eq. 2.64, is also constant.

A second contribution to the internal virtual work, which is due
to the out-of-plane shear components, may be obtained with similar
considerations based on Eqns. 2.82 and 2.23; such contribution may
be cast as

δΥ‡i =

∫∫

A
δ γ ⊤z q zdA

= δ d ⊤
[ ∫∫

A
B ⊤γ Γ B γdA

]
d

= δ d ⊤K ‡ d . (2.95)

The overall internal work is thus

δΥi = δΥ†i + δΥ‡i

= δ d ⊤
(
K † + K ‡

)
d

= δ d ⊤K d . (2.96)

The principle of virtual works states that the external and the in-
ternal virtual works are equal for a general virtual displacement δ d ,
namely

δ d ⊤G = δΥe = δΥi = δ d ⊤K d , ∀ δ d , (2.97)

43Many distinct definitions are associated to the element distortion concept, being
the one reported relevant for the specific dissertation passage.
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if and only if the applied external actions G are in equilibrium with
the elastic reactions due to the displacements d ; the following equality
thus holds

G = K d ; (2.98)

the K stiffness matrix relates a deformed element configuration, which
is defined based on the generalized displacement vector d , with the G
generalized forces that have to be applied at the element nodes to keep
the element in such a stretched state.
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2.3.6 The shear locking flaw

Figures 3.3 rationalize the shear locking phenomenon that plagues the
plain bilinear isoparametric element in its mimicking the pure bending
deformation modes; the case of an in-plane constant curvature bending
is presented, but an analogous behaviour is observed in the out-of-plane
bending case.

In Figure 3.3a, a rectangular44 planar element is presented, whose
geometry is defined by the a/b side length ratio, being the thickness
not relevant for the treatise. The material is assumed linearly elastic,
homogeneous and isotropic.

In Figure 3.3b, the exact solution for an equivalent prismatic body
subject to pure bending is presented in terms of strain components and
strain energy area density, as a function of the imposed angular dis-
placement of the ends. The first Castigliano theorem may be employed
in deriving the applied bending moment Cb, as predicted by the exact
solution.

In Figure 3.3c, the same angular displacement is imposed to the
flanks of a four-noded, isoparametric element of the kind described
in the present treatise. The trapezoidal (or keystoning) deformation
shown in Figure is the best-effort exact solution mimicking we may
obtain with a single element.

In the absence of oop displacements and ip rotations, a pure mem-
brane deformation is obtained; the drilling dof is not considered. Strain
components are derived according to the proposed formulation, and
reported along with the strain energy area density; apart from the ϵx
longitudinal strain, inconsistencies are observed with respect to the ex-
act solution. Again, the first Castigliano theorem may be employed
in deriving the bending moment Ciso4, as predicted by the element
formulation.

In Figure 3.3d, the exact solution is subtracted from its finite ele-
ment counterpart, thus revealing a spurious residual strain field, whose
most notable characteristic is a generally nonzero ip shear strain com-
ponent γxy. Such a component is constant in the transverse to bending
direction y, whereas it linearly varies in the axial direction x from +α/2
to −α/2, being null at the x = 0 (or ξ = 0) locus alone.

Such a spurious shear component contributes to the element strain

44vs. generally quadrangular, for the sake of treatise simplicity
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Figure 2.13: Rationalization of the [ip] shear locking phenomenon, in
the case of a rectangular plate element. An analogous construction
may be derived for the oop counterpart.129



energy thus stiffening the element with respect to the exact solution;
the ratio between the bending moments to be applied to induce a given
curvature is also reported, which reveals that a ≈ +48% bogus stiff-
ening is to be expected for the geometrically regular element, and the
commonest structural materials.

In particular the error grows with the a/b ratio, and it becomes
consistent with that due the sole σy = 0 vs. ϵy = 0 incongruity (≈
+9.8%) in the limit case of a/b→ 0.

If such a spurious stiffening is tolerable for the in-plane bending –
which is a secondary loadcase for a thin walled body, the analogous
results obtained in the more significant transverse deflection (out-of-
plane) bending case makes the element under scrutiny not compliant
with the Irons patch test45 for plates – i.e., some error due to discretiza-
tion is noticed even in the uniform curvature bending loadcase.

Many workarounds are proposed in literature, see e.g. the chapters
devoted to the topic in [9]; in the following, two emending techniques
are presented, which are (apparently46) employed for the MSC.Marc
Element 75.

A solution for the oop plate bending

An ingenious sampling and interpolation technique has been developed
in [10] that overcomes the locking effect due to the spurious transverse
shear strain that develops when the element is subject to out-of-plane
bending. Such technique, however, does not correct the element be-
haviour with respect to in-plane bending.

Eqn. 2.82 is employed in obtaining the tranverse shear strain com-
ponents gzx and gyz at the edge midpoints; the edge-aligned component

gzîj is derived by projection along the îj direction, whereas the orthog-
onal component is neglected.

Figure 2.14a evidences that a null spurious tranverse shear is mea-
sured at the midpoint of the 12 and of the 41 edges when a constant,

45in summary: a finite element formulation passes the patch test if an arbitrarily
coarse discretization still exactly forecasts any uniform [generalized] strain solution,
given a conformable set of boundary conditions; see [7], and [8] for some further
developments.

46Documentation is not as detailed, and the source code is not available; some
literature search and some reverse engineering hints for the usage of such techniques.
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out-of-plane curvature is locally enforced that develops along the 1̂2
and the 4̂1 directions, respectively. Such property holds for all edges.

In Figure 2.14b, a differential out-of-plane displacement is added to
the initial pure bending configuration of Fig. 2.14a, and in the absence
of further rotations at nodes; a proper (vs. spurious) transverse shear
strain field is thus induced in the element, that the sampling scheme
must properly evaluate.

The edge aligned, transverse shear components sampled at the side
midpoints are then assigned to the whole edge, and in particular to
both its extremal nodes.

As shown in Figure 2.14b (and in the related enlarged view), two
independent transverse shear components gz1̂2 and gz4̂1 are associated
to the n1 node, which is taken as an example.

A vector is uniquely determined, whose projections on the 1̂2 and
4̂1 directions coincide with the associated transverse shear components;
the components of such vector with respect to the x, y axes define the
gzx,n1 and gyz,n1 tranverse shear terms at the n1 node.

Such procedure is repeated for all the element vertices; the obtained
nodal values for the transverse shear components are then interpolated
to the element interior, according to the customary bilinear scheme.

Due to the peculiarity of the initial sampling points, the obtained
tranverse shear strain field is amended with respect to the spurious
contribution that previously led to the shear locking effect; the usual
quadrature scheme may now be employed.

Equation 2.82 still formalizes the passage from nodal dofs to the
out-of-plane shear field, since the procedure described in the present
paragraph may be easily cast in the form of a revised B γ matrix.

A solution for the ip plate bending, which also mitigates the
drilling mode quirks.

TODO.
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Figure 2.14: A transverse shear sampling technique employed in the
four-noded isoparametric element for preventing shear locking in the
oop plate bending.
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Figure 2.15: Four elementary combinations of the drilling dofs, and the
displacement modes produced based on a partial – due to the abate-
ment of the S shaped cubic term – slope-continuity at the rotated
corners. The (a) and the (b) modes reproduce – in a displacement con-
tinuity preserving manner – the two Wilson’s incompatible modes; in
particular, the (a) mode may be superposed to the (a*) keystoning de-
formation in order to conserve the right angle of the element corners in
pure flexure, in order to avoid the insurgence of the spurious ip shear
component. Two remaining modes, the (c) mixed pincushion-barrel
mode and the (d) uniform rotation mode, are of limited interest; the
latter (d) mode, in particolar, is nullified by the aforementioned abate-
ment and it may be regarded as the only residual strain energy free
drilling motion.
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2.4 Mass matrix for the finite element

2.4.1 Energy consistent formulation for the mass matrix

The Ω volume of material associated to a finite element is consid-
ered, along with the local, physical reference system (x, y, z), and its
isoparametric counterpart that, for the quadrilateral plate element un-
der scrutiny, is embodied by the (ξ, η, z) triad.

The vector shape function array

S (ξ, η, z) =



. . . ûi(ξ, η, z) . . .
. . . v̂i(ξ, η, z) . . .
. . . ŵi(ξ, η, z) . . .


 (2.99)

is defined based on the elementary motions û i ≡ [ûi, v̂i, ŵi]
⊤ induced

to the element material points by imposing a unit value to the i-th
degree of freedom di, while keeping the others fixed.

The displacement field is then defined as a linear combination of
the elementary motions above, where the d element dofs serve as co-
efficients, namely

u (ξ, η, z) = S (ξ, η, z) d . (2.100)

Deriving with respect to time the equation above, the velocity field

u̇ (ξ, η, z) = S (ξ, η, z) ḋ (2.101)

is obtained as a function of the first variation in time of element dofs.
Expression 2.101 is simplified by the constant-in-time nature of S .

The kinetic energy contribution associated to the deformable ele-
ment material points may be integrated, thus obtaining

Ekin =
1

2

∫∫∫

Ω
u̇ ⊤ u̇ ρdΩ (2.102)

where ρ is the material mass density, that may vary across the domain.
By substituting the velocity field definition of Eq. 2.101 we obtain

Ekin =
1

2

∫∫∫

Ω

[
S ḋ

]⊤ [
S ḋ

]
ρdΩ, (2.103)

and finally

Ekin =
1

2
ḋ ⊤
[∫∫∫

Ω
S ⊤ S ρdΩ

]
ḋ =

1

2
ḋ ⊤M ḋ . (2.104)
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The integral term that defines the M mass matrix is evaluated by
resorting to the same quadrature technique introduced for its stiffness
counterpart.

The actual nature of the mass matrix terms varies based on the
type of the dofs that are associated to the term row and column; in
particular, the diagonal terms that are related to displacements and
rotations are dimensionally consistent with a mass and a moment of
inertia, respectively.

The mass matrix quantifies the inertial response of the finite ele-
ment; according to its definition

M =

∫∫∫

Ω
S ⊤ S ρdΩ, (2.105)

it is merely a function of the material density, and of the kinematic laws
that constrain the motion of the material particles within the element.

If a set of external (generalized) forces G is applied to the ele-
ment dofs in the fictitious absence of elastic reactions, a purely inertial
response is expected. The ḋ vector defines the instantaneous first
derivative in time of the dofs (i.e. nodal translational and rotational
velocities); the instantaneous power supplied by the external forces is
then evaluated as ḋ ⊤G , that induces an equal time derivative of the
kinetic energy, quantified as 47

ḋ ⊤G =
dEkin

dt
=
d

dt

(
1

2
ḋ ⊤M ḋ

)

=
1

2

(
d̈ ⊤M ḋ + ḋ ⊤M d̈

)

= ḋ ⊤M d̈ .

Due to the general nature of ḋ , equality

G = M d̈ (2.106)

is implied, which points out the mass matrix role in transforming the
dof vector second derivative in time (i.e. nodal translational and rota-

47The symmetric matrix characterizing property

x⊤ A y = y ⊤ A x ∀ x , y ∈ Rn

is used in deriving the last passage.
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tional accelerations) into the generalized force components that are to
be applied in order to sustain such variation of motion.

2.4.2 Lumped mass matrix formulation

In a few applications, a diagonal form for the mass matrix is preferred
at the expense of a) a strict adherence to energy consistency with regard
to rotational motions, and b) some arbitrariness in its definition.

The finite element volume is ideally partitioned into a set of influ-
ence domains, one each node. In the case of the four-noded quadrilat-
eral, material points whose ξ, η isoparametric coordinates fall within
the first, second, third and fourth quadrant are associated to nodes n3,
n4, n1 and n2, respectively; those distributed masses are then ideally
accumulated at the associated node.

A group of four concentrated nodal masses is thus defined, whose
motion is defined based on single translational dofs, and not on the plu-
rality of weighted contributions that induces the nonzero, nondiagonal
terms at the consistent mass matrix.

This undue material accumulation at the element periphery pro-
duces a spurious increase of the moment of inertia, condition, this, that
may only be worsened if (positive) rotational inertias are introduced
at nodes.

Those nodal rotational inertias are however required in associating
a bounded angular acceleration to unbalanced nodal torques; solution
methods based on the mass matrix inversion, e.g. explicit dynamic
procedures, are precluded otherwise. Since there is no consensus on
the quantification those inertial terms, the reader is addressed to spe-
cialized literature.

The effect of this elemental overestimation on the rotational iner-
tia of the modeled structures decreases with mesh refinement, and it
vanishes for a theoretically vanishing element size.

2.5 External forces

Energetically consistent external actions may be applied at the nodal
dofs, that may be interpreted as concentrated forces and moments; their
physical rationalization outside the discretized structure framework –
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and in particular back to the underlying elastic continua theory – is
far from being trivial.

Surface tractions and volumetric loads are instead naturally tied
with the continuum formulation, and are usually employed in formal-
izing the load condition of structural components.

The present paragraph derives the equivalent nodal representation
of distributed actions acting on the domain of a single finite element;
the inverse relation provides a finite, distributed traction counterpart
to concentrated actions applied at the nodes of a discretized FE model.

The S set of elementary deformation modes that is introduced in
the context of the element mass matrix derivation, see Eqn. 2.99,
is employed to define a virtual displacement field within the element
domain based on the virtual variation δ d of its nodal dofs values, i.e.

δ u (ξ, η, z) = S (ξ, η, z)δ d , (2.107)

see also Eq. 2.100.
A volumetric external load is considered, whose components p =

[px, py, pz] are consistent with the S matrix reference system, i.e. the
local to the element, physical Cxyz one. If external load components
are defined in the context of a global reference system, straightforward
reference frame transformations are to be applied.

The virtual work performed by those distributed actions is first
integrated along the element domain, and then equalled to its nodal
counterpart δ d ⊤ F , thus leading to

δ d ⊤ F =

∫∫∫

Ω
(δ u )⊤ p dΩ

=

∫∫∫

Ω

(
S δ d

)⊤
p dΩ

= δ d ⊤
∫∫∫

Ω
S ⊤ p dΩ,

and finally to

F =

∫∫∫

Ω
S ⊤ p dΩ (2.108)

due to the general nature of δ d .
In the case of the plate element under scrutiny, we recall that the

volume integral of Eq. 2.108 is numerically evaluated according to Eq.
2.94 quadrature scheme.
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In general, the quadrature along the domain is performed according
to the methods introduced for deriving the element stiffness matrix. If
a surface or an edge load are supplied in place of the volumetric load
vector p , Eq. 2.108 integral may be adapted to span each loaded
element face, or edge.

In the case of low order isoparametric elements – e.g. the four-
noded quadrilateral shell element, an alternative, simplified procedure
for the consolidation of the distributed loads into nodal forces becomes
viable. According to such procedure, the element domain is partitioned
into influence volumes, one each node; the external load contributions
are then accumulated within each partition, and the resultant force
vector is applied to the associated node.

By moving such resultant force from the distribution center of grav-
ity (cog) to the corner node, momentum balance is naively disregarded;
the induced error however decreases with the load field variance across
the element, and hence with the element size. Such error vanishes for
uniform distributed loads.

In the presence of a better established, work consistent counterpart,
such simplified procedure is mostly employed to set a rule-of-thumb
equivalence between distributed and nodal loads; in particular, the
stress-singular nature of a set of nodal loads may be easily pointed out
if it is observed that a finite load resultant is applied to influence areas
that cumulatively vanish with vanishing element size.
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2.6 Joining elements into structures.

2.6.1 Displacement and rotation field continuity

Displacement and rotation fields are continuous at the isoparametric
quadrilateral inter-element interfaces; they are in fact continuous at
nodes since the associated nodal dofs are shared by adjacent elements,
and the field interpolations that occur within each quadrilateral domain
a) they both reduce to the same linear relation along the shared edge,
and b) they are performed in the absence of any contributions related
to unshared nodes or dofs.

A similar result does not hold for the [generalized] strain and stress
components, which are in general discontinuous across the element
boundaries; such a discontinuity – which vanishes with mesh refine-
ment except at singularities48 – constitutes an indicator of the fe dis-
cretization error.

2.6.2 Expressing the element stiffness matrix in terms
of global dofs

As seen in Par. 2.3.5, the stiffness matrix of each j-th element de-
fines the elastic relation between the associated generalized forces and
displacements, i.e.

G ej = K ej d ej (2.109)

where the dofs definition is local with respect to the element under
scrutiny.

In order to investigate the mutual interaction between elements
in a structure, a common set of global dofs is required; in particular,
generalized displacement dofs are defined at each l-th global node, i.e.,
for nodes interacting with the shell element formulation under scrutiny,

d gl =




ugl
vgl
wgl

θgl
φgl

ψgl



. (2.110)

48i.e. at locations at which a singularity (or a discontinuity) of the exact solution
may be theoretically predicted
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The global reference system OXY Z is typically employed in project-
ing nodal vector components. However, each l-th global node may
be supplied with a specific reference system, whose unit vectors are
ı̂gl, ȷ̂gl, k̂gl, thus permitting the employment of non uniformly aligned
(e.g. cylindrical) global reference systems.

Those nodal degrees of freedom may be collected in a global dofs
vector

d ⊤g =
[
d ⊤g1 d ⊤g2 . . . d ⊤gl . . . d ⊤gn

]
(2.111)

that parametrically defines any deformed configuration of the structure.
Analogously, a global, external (generalized49) forces vector may be

defined, that assumes the form

F ⊤g =
[
F ⊤g1 F ⊤g2 . . . F ⊤gl . . . F ⊤gn

]
; (2.112)

since single dof (or single-dof constraint (spc)) and multi dof (or multi-
dof constraint (mpc)) kinematic constraints50 are expected to be ap-
plied to the structure dofs, the following vector of reaction forces

R ⊤g =
[
R ⊤g1 R ⊤g2 . . . R ⊤gl . . . R ⊤gn

]
(2.113)

is introduced. Many FE softwares – and MSC.Marc in particular –
treat spc and mpc constraints separately, thus leading to two set of
constraint actions, namely the (strictly named) reaction forces, and
the tying forces, respectively; for the sake of simplicity, the constraint
treatise is unified in the present contribution.

The simple four element, roof-like structure of Fig. 2.16 is em-
ployed in the following to discuss the procedure that derives the elastic
response characterization for the structure from its elemental counter-
parts.

The structure comprises nine nodes, whose location in space is de-
fined according to a global reference system OXY Z, see Table 2.3.

49Unless otherwise specified, the displacement and force terms refer to the dofs,
and the suitable actions that perform work with their variation, respectively. They
are in fact generalized forces and displacements.

50in a previous version of this contribution, an equivalency was proposed between
the single dof vs. multi dof constraint characterization, and the external – i.e. to
ground – vs. internal classification. In fact, those classifications are disjoint, since, if
ground reactions are expected in the single dof case, legitimate multi dof constraint
exist – e.g. the hypothetical ug2 = vg5 – whose reactions are not self-equilibrated,
and hence require an external, ground intervention for their balancing.
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Figure 2.16: A simple four-element, roof-like structure employed in
discussing the assembly procedures. The elements are square, thick
plates whose angle with respect to the global XY plane is 30◦

node X Y Z

g1 −ac 0 +a
g2 0 +as +a
g3 +ac 0 +a
g4 −ac 0 0
g5 0 +as 0
g6 +ac 0 0
g7 −ac 0 −a
g8 0 +as −a
g9 +ac 0 −a

Table 2.3: Nodal coordinates for the roof-like structure of Figure 2.16.
a is the element side length, c = cos 30◦ and s = sin 30◦
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Figure 2.17: A representation of the stiffness matrix terms for each
element in the example structure; the term magnitude is represented
through a linear grayscale, spanning from zero (white) to the peak
value (black).

n1 n2 n3 n4

e1 g1 g2 g5 g4
e2 g2 g3 g6 g5
e3 g4 g5 g8 g7
e4 g5 g6 g9 g8

Table 2.4: Element connectivity for the roof-like structure of Figure
2.16. As an example, the node described by the local numbering e3n2
is mapped to the global node g5.

The structure is composed by four, identical, four noded isopara-
metric shell elements, whose formulation is described in the preceding
section 2.3.

A grayscale, normalized representation of the element stiffness ma-
trix is shown in Figure 2.17, where the white to black colormap spans
from zero to the maximum in absolute value term.

The mapping between local, element based node numbering and
the global node numbering is reported in the connectivity Table 2.4.

Such i) local to global node numbering mapping, together with
ii) the change in reference system mentioned above, defines a set of
elemental dof mapping matrices, P ej , one each j-th element. Such
matrices are defined as follows: the i-th row the P ej matrix contains
the coefficients of the linear combination of global dofs that equates the
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Figure 2.18: A grayscale representation of the terms of the four P ej

mapping matrices associated the elements of Fig. 2.16. The colormap
spans from white (zero) to black (one); the lighter and the darker
grey colors represent terms that equate in modulus sin 30◦ and cos 30◦,
respectively. 143



i local dof of the j-th element; an example is proposed in the following
to illustrate such relation.

With reference to the structure of Figure 2.16, we1n2 and θe1n1
respectively represent the 10th and the 13th local degrees of freedom
of element 1.

Their global representation involves a subset of the g2 and g1 global
nodes dofs, respectively, namely

we1n2 = ⟨k̂e1, ı̂g2⟩ug2 + ⟨k̂e1, ȷ̂g2⟩vg2 + ⟨k̂e1, k̂g2⟩wg2 (2.114)

θe1n1 = ⟨̂ıe1, ı̂g1⟩θg1 + ⟨̂ıe1, ȷ̂g1⟩ϕg1 + ⟨̂ıe1, k̂g1⟩ψg1 (2.115)

where ı̂e1,ȷ̂e1, k̂e1 are the orientation vectors of the element 1 local
reference system, ı̂g1,ȷ̂g1,k̂g1 and ı̂g2,ȷ̂g2,k̂g2 are the orientation vectors
of the global nodes 1 and 2 reference systems, and ⟨·, ·⟩ represents
their mutual scalar product, or, equivalently, the cosinus of the angle
between two unit vectors.

The 10th and the 13th row of the P e1 mapping matrix are defined
based on Eqs.2.114 and 2.115, respectively, and they are null except
for the elements

[
P e1

]
10,7

= ⟨k̂e1, ı̂g2⟩
[
P e1

]
13,4

= ⟨̂ıe1, ı̂g1⟩
[
P e1

]
10,8

= ⟨k̂e1, ȷ̂g2⟩
[
P e1

]
13,5

= ⟨̂ıe1, ȷ̂g1⟩
[
P e1

]
10,9

= ⟨k̂e1, k̂g2⟩
[
P e1

]
13,6

= ⟨̂ıe1, k̂g1⟩,

being ug2,vg2,wg2,θg1,ϕg1 and ψg1 the 7th, 8th, 9th, 4th, 5th and 6th
global degrees of freedom according to their position in d g.

Figure 2.18 presents a grayscale representation of the four P ej ma-
trices; please note the extremely sparse nature of those matrices, whose
number of nonzero terms scales with the single element dof cardinality,
whereas the total number of terms scale with the whole structure dof
cardinality.

The rows of the rectangular P ej mapping matrix are mutually or-
thonormal; the mapping matrix is orthogonal in the sense of the Moore-
Penrose pseudoinverse, since its transpose and its pseudoinverse coin-
cide.

By resorting to the elemental dof mapping matrix artifice, the j-th
element dofs may be derived from their global counterpart as

d ej = P ej d g, ∀j. (2.116)
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Eq. 2.109 let us further derive the component of external actions that
are required by each j-th stretched element to oppose the its own elastic
reactions as

G ej = K ej P ej d g, ∀j; (2.117)

such a external action vector, which is still expressed in terms of the
local set of dofs, is now formulated as a function of the global displace-
ment vector. Those elemental external action components G ej may be
cast in terms of the global dof set based on the following virtual work
equivalency

δ d ⊤g G g←ej =
(
P ej δ d g

)⊤
G ej , ∀ δ d g (2.118)

where δ d g is a generic global virtual displacement, P ej δ d g is the
associated virtual variation of the j-th element dofs, see Eq.2.116, and

G g←ej = P ⊤ej G ej (2.119)

is the global counterpart of the local G ej nodal action vector.
Based on 2.109, 2.116 and 2.119, the contribution of the j-th ele-

ment to the elastic response of the structure may finally be described
as the vector of global force components

G g←ej = P ⊤ej K ej P ej d g; (2.120)

that have to be applied at the structure dofs in order to equilibrate
the elastic reactions that arise at the nodes of the j-th element, if a
deformed configuration is prescribed for the latter according to the d g

global displacement mode.
By accumulating the contribution of the various elements in a struc-

ture, the overall relation is obtained

G g =
∑

j

G g←ej =



∑

j

P ⊤ej K ej P ej︸ ︷︷ ︸
K g←ej


 d g = K g d g, (2.121)

that defines the K g global stiffness matrix as an assembly of the K g←ej

elemental contributions. The contribute accumulation at each summa-
tory step is graphically represented in Fig. 2.19, in the case of the
example structure of Fig. 2.16.
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The global stiffness matrix is symmetric, and it shows nonzero
terms at cells whose row and column indices are associate to two dofs
that are bridged by a direct elastic link – i.e., an element exists, that in-
sists on both the nodes those dofs pertain; since only a limited number
of elements insist on each given node, the matrix is sparse, as shown
in Fig. 2.19d.

An favourable numbering of the global nodes may be searched for,
such that the nonzero terms are clustered within a (possibly) nar-
row band around the diagonal; the resulting stiffness matrix is hence
banded, condition this that reduces both the storage memory require-
ments, and the computational effort in applying the various algebraic
operators to the matrix.

The stiffness matrix (half-)bandwidth may be predicted by evalu-
ating the bandwidth required for storing each element contribution

bej = (imax − imin + 1) l, (2.122)

and retaining the
b = max

ej
bej (2.123)

peak value; in the formula 2.122, l is the number of dof per element
node, whereas imax and imax are the extremal integer labels associated
to the element nodes, according to the global numbering.

2.6.3 External forces assembly

The element vector forces are accumulated to derive global external
forces vector F g, as in

F g =
∑

j

P ⊤ej F ej ; (2.124)

the transposed P ⊤ej mapping matrix is employed to translate the ac-
tions on the local dofs to their global counterpart.
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dg1 dg2 dg3 dg4 dg5 dg6 dg7 dg8 dg9

F g1

F g2

F g3

F g4

F g5

F g6

F g7

F g8

F g9

bsymm

(a) (b)

(c) (d)

Figure 2.19: Graphical representation of the assembly steps for the
stiffness matrix of the Fig. 2.16 structure. In (a), the K g←e1 term
is presented alone; the K g←e2, K g←e3 and K g←e4 are sequentially
accumulated, thus leading to (b), (c) and (d). In (d), the symmetric
and banded nature of the matrix is evidenced. The zero-initialized
form for the matrix that precedes the (a) step is omitted.
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2.7 Constraints.

2.7.1 A pedagogical example.

Figure 2.20 represents a simple, pedagogical example of a three d.o.f.
elastic system subject to a set of two kinematic constraints. The first,
I, embodies a typical multi d.o.f. constraint51, namely a 3:1 leverage
between the vertical displacements d3 and d1. The second, II, consists
in a single d.o.f., inhomogeneous constraint that imposes a fixed value
to the d2 vertical displacement.

Both the kinematic constraint may be cast in the same algebraic
form of a linear variation52 constraint

∑

i

αjidi = α ⊤j d = βj

where j = I, II and i = 1 . . . 3 the indexes span through the constraints
and the model d.o.f.s, respectively, and the α j equation coefficient
vectors and inhomogeneous terms are

α ⊤I =
[
3 0 1

]
βI = 0

α ⊤II =
[
0 1 0

]
βII = 0.2

In the absence of constraints, viable system configurations span the
whole R3 space of Fig. 2.21 (a); viable configurations with respect to
the first constraint alone span the hyper-plane/subspace53 I, whereas
the subspace II collects the feasible configurations with respect to the
second constraint.

It is relevant to underline that the feasible configuration hyper-
planes I and II are normal to the associated coefficient vectors α I and
α II, respectively.

The I ∩ II intersection subspace collects the configurations that
satisfies both the constraints; such subspace is orthogonal to both α I

and α II.

51usually, and rather improperly, named multipoint constraint (MPC)
52due to the presence of the inhomogeneous term βj
53The subspace of the feasible configurations with respect to a single, scalar linear

equation is an hyperplane in the configuration space; due to the limited d.o.f. set
cardinality, Figure 2.21 (a) represents a 2d plane within a 3d space. The hyper-
nomenclature is preserved for generality.
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d1

d2
d3

1:3

0.2 mm

0 d1 + 1 d2 + 0 d3 = 0.2
3 d1 − 0 d2 + 1 d3 = 0I:

II:(a)

(b)

Figure 2.20: A pedagogical elastic three d.o.f. system, (a), subject to
a few kinematic constraints (b).

If the constraints are assumed as ideal54, the exerted reactions are
orthogonal to the allowed virtual displacements – i.e. feasible displace-
ments departing from a feasible configuration; reaction forces are con-
fined on a subspace of the reaction space that corresponds to55 the
orthogonal complement of the feasible virtual displacement subspace.
By moving on the constraint reaction space shown in 2.21 (b), the reac-
tion forces associated to constraint I and II are thus proportional to the
α I and α II vectors, respectively; the cumulative constraint reactions
lie on the linear span of those two vectors, namely span (α I, α II).

2.7.2 General formulation

Purpose of the present paragraph is to define a set of m linear, possibly
inhomogeneous56 (i.e. linear variation) constraint equations amongst

54or, namely, frictionless
55i.e. the two subspaces share, with adjusted physical dimensions, the same gen-

erator vectors.
56according to many fe code implementation – e.g. MSC.Marc or ABAQUS – the

inhomogeneous term is allowed in spc constraints only, limiting the more general
mpc kinematic constraint to the homogeneous form only; an auxiliary node whose
k-th dof is interested by both the mpc and an by an inhomogeneous spc may be
added to the model to circumvent such limitation.
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d1

d2

d3
R1

R2

R3

II

I

I ∩ II

(a) configuration space (b) reaction space

∥ αI

R = −αIlI − αIIlII, ∀lI,II⊥ II, ∥ αII

⊥ I, ∥ αI

⊥ αI

⊥ αII

∥ I ∩ II

I ∩ II

∥ αII
⊥ (I ∩ II)

Figure 2.21: Allowed system configurations and constraint reactions for
the pedagogical example of Fig. 2.20. The allowed virtual displacement
sets are easily derived as the homogenous counterpart of (a), and are
left to the reader’s imagination.

the structure d dofs which may embody various kinds of kinematic
relations, e.g. the pedagogic ones described above as, again,

∑

i

αjidi = α ⊤j d = βj , j = 1 . . .m (2.125)

2.7.3 A first solution procedure for the constrained sys-
tem

which reveals itself consistent with the Lagrange multiplier technique
for constrained minimization.

Differences with respect to the alternative one that was proposed
in previous courses, and which is still presented below are:

� the present one is shorter;

� it is more classical and widespread in literature;

� constraint equations are treated as, indeed, equations, and not as
dof assignments; in particular the dofs are not to be partitioned
into the tied/retained sets. Such a distinction is however a fact
in actual implementations;

� the order of the system of equations to be solved is augmented
(vs. reduced) of one unit for each added constraint; the impact
on the matrix bandwidth is however analogous;
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� the assembled stiffness matrix is bordered with further minors,
but not otherwise manipulated;

� the basis for the reaction force vectors clearly appears from the
formulation.

� the equivalence between non-zero imposed displacements and a
suitable sets of external loads does not appear evident according
to the present formulation.

A basis for the allowed constraint reactions subspace

By employing a matrix formulation, Eq. 2.125, may be directly cast as

L ⊤ d = β . (2.126)

where each Lji element of the m rows, n columns L ⊤ matrix equates
the corrisponding αji coefficient, and the β column vector collects the
m βj inhomogeneous terms57.

Also, the homogeneous counterpart of ?? hold for the same virtual
displacements, namely

L ⊤ δ d = 0 , (2.127)

they are required to be orthogonal to the L matrix columns, but oth-
erwise free; the linear span of those columns thus contains all and
the only reaction vectors that are orthogonal (and, in particular work-
orthogonal) to any feasible virtual displacement. We hence have that
the variation of the m terms of a ℓ column vector makes

R = −L ℓ , (2.128)

span all the allowed ideal constraint reaction subspace58.
Due to their role in defining the L matrix, the αji coefficients that

drive the homogeneous part of Eqs. ?? kinematic relations also rule the
allowed internal and external reaction forces. In particular, for each

57The relation between the equivalent matrix/vector pairs (λ , d ), ( Λ , d ) and
(L , β ) is here reported: XXX

58the inclusion of a minus sign does not really require a justification, due to the
arbitrary nature of ℓ .
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j-th tying equation a parametric constraint reaction R j is raised in
the form

R j = −




...
αji
...


 ℓj (2.129)

to enforce the associated equation.
The overall reaction force vector R is obtained as the accumulation

of the R j contributions. The ℓj factors may be obtained from the
solution of the equilibrium equations, as shown in the following.

The system of constrained equilibrium equations, and its so-
lution

The nodal dof equilibrium equations derived by pairing i) the K d
external forces required to keep the structure in a d deformed con-
figuration, see Eq. 2.121, ii) the actual external forces F which are
applied to the elements as distributed loads, see Eq. 2.124, or directly
at nodes in form of concentrated loads, and iii) the reaction forces R
may be cast as

K d = F + R . (2.130)

Here, d and R are both unknown.
The Eq. 2.128 form for the reaction forces is substituted within the

nodal equilibrium equations 2.130, thus obtaining the following

K d + L ℓ = F

under-determined system of n equations in the n+m unknowns d and
ℓ . By appending them constraint equations ??, cardinality consistency
between equation number and unknowns is restored, thus leading to
the linear system of equations

[
K L
L ⊤ 0

] [
d
ℓ

]
=

[
F
β

]
, (2.131)

whose order is n+m.
The educated reader might recognise in 2.131 the system of equa-

tions associated to the retrieval of the stationary point in the d , ℓ
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variables of the following quadratic form

1

2
d ⊤K d − d ⊤ F + ℓ ⊤

(
L ⊤ d − β

)
, (2.132)

which in turn represents – according to the Lagrange multiplier tech-
nique – the minimization of the total potential energy of a linearly
elastic system

1

2
d ⊤K d − d ⊤ F

i.e. the sum of i) internal strain energy, and ii) the unexerted work
aka. the potential of the external forces, subject to the

L ⊤ d − β = 0

kinematic constraints, being ℓ the vector obtained by stacking the
Lagrange multipliers.

By solving the Eq. 2.131 system of linear equations, the solution
vectors d∗, ℓ∗ are obtained; the first directly describes the structure
deformed configuration, whereas the second may be employed to derive
the [generalized] reaction forces as

R = −L ℓ ∗.

2.7.4 An alternative constraining procedure

Tied and retained dofs

According to this alternative procedure, for each j-th constraint equa-
tion Eq. 2.7.1, one of the involved59 dofs, e.g. the dk ∈ d , is designated
as the associated tj tied one; the value of the tied dof is parametrically
defined base on that equation, as in

dk ≡ tj =
∑

i ̸=k

(
−αji
αjk

)
di +

(
βj
αjk

)
, j = 1 . . .m (2.133)

Each kinematic constraint is hence treated as an assignment in the
sense of computer programming, more than as a further simultaneous
equation to be satisfied by the solution.

59i.e. αjk ̸= 0
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In order to avoid assignment conflicts, a given dof can’t serve as
tied in more than one equation; however, the assignment expression
may legitimately involve dofs which act as tied for other equations,
thus possibly producing a tangled dependency tree.

The designation of as suitable set of tj , j = 1 . . .m tied dofs may
be discussed based on Fig. 2.22, where the quantities involved in Eqs.
2.126 are represented. In particular, each column of the L⊤ matrix is
associated to a di dof (and vice versa), and the tied dof selection may
therefore be rationalized as the selection of m linearly independent
columns amid the n of the L ⊤ matrix; if the k-th column is selected,
the associated dk enters the t tied dof set as its j-th element60, namely
dk ≡ tj .

The dofs associated to the unselected columns are collected in the
retained set; for each unselected h-th column, the associated di ≡ rh
dof enters the r vector as its h-th element61.

In this way, a partitioning into tied and retained subset is defined
for both the L ⊤ columns and the d dofs.

By grouping the selected columns into a A square matrix, and the
residual columns into a (−B ) matrix, Eqs. 2.126 may be cast as

A t +
(
−B

)
r = β ⇒ A t = B r + β ,

we may hence explicitly define the t tied dofs as a linear variation
function of the r retained ones, i.e.

t =
[
A−1B

]
r +

[
A−1 β

]
, (2.134)

where the availability of the A−1 inverse matrix is granted based on the
assumed linear independence of the selected L ⊤ columns. An element-
wise equivalent of the former relation may be conveniently cast as

tj = a ⊤j B r + a ⊤j β , j = 1 . . .m (2.135)

where a ⊤j =
[
A−1

]
rowj

is the j-th row of the A−1 inverse matrix.

In most advanced fe codes the tied dof selection is left to the user’s
responsibility, whereas an algorithm for a robust – even if not strictly

60i.e. a unique relation k ⇔ j is cast between the indexes k and j at which the
same tied dof tj ≡ dk is positioned within the t and d vectors, respectively.

61Again, a unique h ⇔ i relation is cast between the indexes associated to the
same rh ≡ di dof in two vectors r and d .
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=

L⊤ d βt2

tj

tm

t1

t2

tj

tm

t1

r1

r2

rn−m

rh

t1 t2 tj tm. . .r1 r2 r3 rh rn−m. . . . . . . . . . . . ...
...
...

...

...

...

...

...

...

+

r1

r2

rn−m

rh

...

...

...

...

...

= β

β

=

A
(
−B

)
t r+ = β

tied dof. selection

1

2

m

j

...

...

̸= 0

d1 d2 dn. . .dn−1. . .d3

Figure 2.22: Graphical representation for the designation the tied dofs,
based on the selection of m linearly independent columns within the
L ⊤ matrix, which is hence partitioned in two A ,

(
−B

)
blocks. In the

graphical representation, m = 6, n = 15, but the rationalization is of
general validity.
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=

di 1

rh

0

dk† a⊤j†B = 0

+

0

a⊤j†β = a

dk‡ a⊤j‡β

retained dof.

tied dof., SPC

tied dof.

dk† ≡ tj† = a

general MPC

di = rh

Λd = r + ∆

h

i

k†

k‡

dk‡ ≡ tj‡

a⊤j‡B

Figure 2.23: Graphical representation for the Λ matrix and for the ∆
vector in Eq. 2.134; representative matrix rows are illustrated for a
retained dof, and for two tied dofs, namely a fixed displacement – aka
SPC – equation subcase, and the general case.

optimal – automatic selection is available in literature, see [11], [12,
p.293].

Since the r retained dofs do not serve as tied in any of the constraint
equations, they retain a fully independent status and they may be
effectively employed to span the subspace of feasible – i.e. constraint-
conforming – deformed configurations.

By pairing the trivial identity relation between each rh retained
dof and its di counterpart in d , and the dependence of each tied tj
dof on the retained dofs according to Eq. 2.135, we obtain the explicit
expression of the complete d dof set as as a linear variation function
of the retained ones only, namely

d = Λ r + ∆ , (2.136)

where the construction of the n rows, n −m columns Λ matrix, and
of the n terms ∆ column vector is illustrated in Fig. 2.23 for a few
representative rows, and it may described as follows:

� for each retained dof di ≡ rh, the associated i-th row in Λ is
composed of a unit term at the h-th column, and zero elsewhere;
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the associated i-th term in ∆ is also zero. In this way, the
equivalence is enforced;

� for each tied dof dk ≡ tj , the associated i-th row in Λ , and the
i-th term in ∆ house Eq. 2.135 terms, and are hence composed
by the a ⊤j B row and by the a ⊤j β term, respectively;

� in the notable case a dof is tied based on a SPC constraint equa-
tion, i.e. dk† ≡ tj† = f , the associated a ⊤j B row in Λ is null,
and the associated a ⊤j β term in ∆ equates f , thus leading to
the desired tj† = 0 ⊤ r + a.

Also, the virtual displacements in the neighborhood of a feasible
constrained configuration are restricted to the linear combinations of
the Λ matrix columns Λ h, i.e.

δ d = Λ δ r = Λ 1 δr1 + Λ 2 δr2 + . . .+ Λ n−m δrn−m (2.137)

with arbitrary virtual displacement values at the retained dofs, whereas
the tied ones just follow.

The ideal constraint hypothesis requires the reaction force vector R
to be orthogonal to a general virtual displacement, and such condition
holds if and only if R is orthogonal to each the Λ matrix columns, i.e.

〈[
Λ
]
col h

, R
〉
= 0 h = 1 . . . n−m, (2.138)

or, equivalently,
Λ ⊤R = 0 . (2.139)

The system of constrained equilibrium equations, and its so-
lution. Alternative form.

We consider the nodal equilibrium equations as expressed in Eq. 2.130.
If constraints are applied, we have

K
(
Λ r + ∆

)
= F + R (2.140)

and
K Λ r =

(
F − K ∆

)
+ R , (2.141)

where the inhomogeneous part of the constraint equations is de facto
assimilated to a further contribution to the external loads, which may
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be rationalized as the elastic nodal reactions raised when i) all the
retained dof are kept fixed at their initial position, and ii) each tied
dof is displaced of an amount equal to the inhomogeneous term of the
tying equation.

By projecting the equations on the subspace of allowed configura-
tions

Λ ⊤K Λ
︸ ︷︷ ︸

KR

r = Λ ⊤
(
F − K ∆

)
︸ ︷︷ ︸

FR

+ Λ ⊤R
︸ ︷︷ ︸

=0

, (2.142)

the contribution of the unknown reaction forces, that are normal to
such a subspace – see Eq. 2.139, vanishes.

The linear system of constrained nodal dof equilibrium equations
is then set as

KR r = FR (2.143)

and it may be solved for the retained dof vector r .
Once the solution vector r ∗ is found in terms of displacements at

retained dofs, the overall displacement vector and the unknown reac-
tion forces may be derived as

d ∗ = Λ r ∗ + ∆ ; (2.144)

and
R ∗ = K

(
Λ r ∗ + ∆

)
− F . (2.145)

2.7.5 Retrieval of element based results

Once the problem is solved in terms of the d ∗ structure nodal displace-
ments, we may extract for each j-th element the associated local dofs
vector as

d ∗ej = P ej d
∗. (2.146)

We may in turn derive the strains at the reference plane, and the
curvatures as

e = B e
ej(ξ, η) d

∗
ej κ = B κ

ej(ξ, η) d
∗
ej (2.147)

or directly the tt, ip strain components as

ϵ =
(
B e

ej(ξ, η) + B κ
ej(ξ, η)z

)
d ∗ej . (2.148)
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ip stresses may be then derived according to the material constitutive
law, see Eq. 2.13. The oop tranverse shear strain components may be
derived as

γ z = B γ
ej(ξ, η) d

∗
ej . (2.149)

All the cited quantities are customarily sampled at the gaussian inte-
gration points, and possibly extrapolated at nodes.
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Chapter 3

Advanced analysis tools
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3.1 Notable Multi Point Constraints

3.1.1 Rigid body link RBE2

A master (or retained, control, independent, etc.) C node is consid-
ered, whose coordinates are defined as xC , yC , zC in a (typically) global
reference system, along with a set of n Pi nodes whose coordinates are
xi, yi, zi.

A kinematic link is to be established such that the dofs – or a subset
of them – associated to the Pi nodes follow the rototranslations of the
C control according to the rigid body motion laws.

In the case of a fully constrained Pi node we have




ui
vi
wi
θi
ϕi
ψi



=




1 0 0 0 +(zi − zC) −(yi − yC)
0 1 0 −(zi − zC) 0 +(xi − xC)
0 0 1 +(yi − yC) −(xi − xC) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




︸ ︷︷ ︸
L i

·




uC
vC
wC
θC
ϕC
ψC




(3.1)
where u, v, w (θ, ϕ, ψ) are the translation (rotation) vector components
with respect to the x, y, z cartesian reference system. A subset of the
above dof dependency relations may be cast to obtain a partial con-
straining of the Pi node; a free relative motion of such node with respect
to the rigid body is allowed at the unconstrained dofs.

External actions that are applied to tied Pi dofs are reduced to
the master node in form of a statically equivalent counterpart; the
contributions deriving from each Pi node are finally accumulated.

3.1.2 Distributed load / averaged motion link RBE3

A reference C node of coordinates x C = (xC , yC , zC) – which is
here customarily assumed as an isolated node – is considered, along
with a distribution of n weighted nodes Pi, qi, whose coordinates are
x i = (xi, yi, zi). The nodal weight qi is usually determined with some
degree of arbitrariness, e.g. by partitioning the attached elements into
nodal influence domains, and by associating to each node a weight
that is proportional to the influence domain extension. Mass-referring
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nomenclature is employed throughout the paragraph, although qi are
adimensional.

The G center of mass is derived for the distribution, whose coordi-
nates are xG = (xG, yG, zG), along with the overall mass m =

∑
i qi

and the centroidal matrix of inertia

J =
∑

i

qi



y2Gi + z2Gi −xGi yGi −xGi zGi
−yGi xGi z2Gi + x2Gi −yGi zGi
−zGi xGi −zGi yGi x2Gi + y2Gi


 , (3.2)

where 

xGi
yGi
zGi


 = xGi = x i − xG.

The J matrix of inertia is assumed as nonsingular – a condition, this,
that occurs if the Pi distribution involves at least three non-collinear
points; its inverse may be numerically computed as J−1.

The RBE3 multi-dof constraint may be described based on either
i) the imposed kinematic relations and ii) the nature of the associated
reactions.

Starting from the latter approach, when a general load consisting
of three force components ŨC , ṼC , W̃C and three moment components
Θ̃C , Φ̃C , Ψ̃C is applied at C, it induces a suitable set of reaction forces
on both C itself and on the Pi nodes, such that the C node balance
gets restored – i.e. the reactions on C, namely U C = − Ũ C , are
equal and opposite to the applied loads. Since the RBE3 is an internal
constraint, the overall set of reactions must be self-equilibrated, and
hence the distribution of reaction forces exerted on the Pi nodes is
statically equivalent to the applied load at C.

According to such observation, the RBE3 constitutes an effective
tool suitable for distributing a concentrated loading on the nodes along
a portion of the structure.

A crude algebraic expression for the reaction force components at
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the Pi nodes may be obtained as



Ui
Vi
Wi


 = qi





a
b
c


+



d
e
f


 ∧ xGi


 (3.3)



Ui
Vi
Wi




︸ ︷︷ ︸
U i

= qi



1 0 0 0 +zGi −yGi
0 1 0 −zGi 0 +xGi
0 0 1 +yGi −xGi 0




︸ ︷︷ ︸
S i




a
b
c
d
e
f




︸︷︷︸
a

, (3.4)

where the S i =
[
I − [ xGi]∧

]
matrix is built upon the matrix multi-

plication form of the vector product1, and the a, b, c, d, e, f coefficients
are defined based on the static equivalence between the applied loading
at C, and its distributed counterpart; in particular the system of six
linear equations



ŨC
ṼC
W̃C


 =

∑

i



Ui
Vi
Wi


 ,



Θ̃C

Φ̃C
Ψ̃C


 =

∑

i



xi − xC
yi − yC
zi − zC


 ∧



Ui
Vi
Wi


 (3.5)

is solved for the aforementioned unknown parameters, i.e.

∑

i

qi

[
I

[ x i − x C ]∧

]
S i

︸ ︷︷ ︸
A

a =




ŨC
ṼC
W̃C

Θ̃C

Φ̃C
Ψ̃C




︸ ︷︷ ︸
ŨC

, (3.6)

1as in

xi ∧ □ = [ x i]∧ · □ , [ x i]∧ =

 0 −zi +yi
+zi 0 −xi

−yi +xi 0


for a generic □ column vector placeholder, see https://en.wikipedia.org/wiki/

Cross_product#Conversion_to_matrix_multiplication
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and, with nonsingular A,

a = A−1 Ũ C (3.7)

and finally, from Eqn. 3.5,

Ui = qi
(
S iA

−1) Ũ C (3.8)

An explicit form for the inverse of the A matrix is available as

A−1 =

[
1
m I 0

0 J−1

]

︸ ︷︷ ︸
M−1

[
I 0

[ x C − xG]∧ I

]

︸ ︷︷ ︸
L⊤CG

, (3.9)

where L ⊤CG is the matrix that transforms the Ũ C actions at C into

statically equivalent2 ŨG = L ⊤CG Ũ C actions at G, and M−1 takes the
form of the inverse of the mass matrix for a rigid body that encompass
the Pi, qi nodes, and possibly C, with handle dofs at G. The existence
of the A−1 matrix inverse clearly depends on the assumed existence
of J−1.

Figure 3.1 represents the distribution of reaction forces at the Pi
nodes, according to Eq. 3.4.

The first contribution R abc,i due to the a, b and c parameters is
represented in the axonometric view inset, and it results in a fraction-
ation of the forces exerted at C, based on the nodal weights qi. We
have in fact

R abc,i = qi



a
b
c


 =

qi∑
i qi

{
ŨC , ṼC , W̃C

}
; (3.10)

based also on Eqs. 3.7,3.9; the resultant moment of this first contribu-
tion with respect to the G centroid is zero by definition.

The Θ̃G, Φ̃G, Ψ̃G moment components within ŨG must hence find
representation through the further d, e, f based contributions in Eq.
3.4, namely

R d,i + R e,i + R f,i = qi


d



1
0
0


+ e



0
1
0


+ f



0
0
1




 ∧ xGi (3.11)

2i.e. with the addition of suitable transport moments
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Figure 3.1: Graphical rationalization of the reactions at the Pi, qi node
distribution. In the (yz,⊥ x) projected view, the R d,i reactions at the
Pi nodes associated to the d moment related parameter are plotted.
The arrows are tangentially, counterclockwisely (if d > 0) oriented
with respect to a Gx cylindrical reference system; their magnitude
is proportional to the nodal weigth qi, and to the projected distance

rx,Gi =
√

(yi − yG)
2 + (zi − zG)

2 from the centroid. The (zx,⊥ y),

(xy,⊥ z) projected views analogously depict the R e,i, R f,i reactions
associated to the e, f moment related parameters, respectively. In the
axonometric view inset, the R abc,i contributions due to the a, b and
c force related parameters are represented. In order to point out the
distance contribution, the case of uniform qi nodal weights is considered
in assigning vector lengths.
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whose resultant force is zero by G centroid definition. The R d,i reac-
tions are represented in the (yz,⊥ x) projected view of Fig. 3.1, and
they consist in tangentially, counterclockwisely (if d > 0, and outward
x) oriented forces with respect to a Gx cylindrical reference system,
whose magnitude scales with i) the qi nodal weight, with ii) the

rx,Gi =

√
(yi − yG)

2 + (zi − zG)
2

projected distance from the G centroid, and, naturally, with iii) the
d parameter. The (zx,⊥ y), (xy,⊥ z) projected views analogously
depict the similarly characterized R e,i, R f,i reactions associated to
the e, f moment related parameters, respectively. Only in the case the
Gxyz reference system is principal of inertia3 a simple formula for the
d, e, f parameter is at hand4, whereas in general they are retrieved by
matching the ŨG moment components as in



d
e
f


 = J−1



Θ̃G

Φ̃G
Ψ̃G


 (3.12)

see Eqs. 3.7,3.9.
By enforcing the a null virtual work cumulatively produced by i)

the U C = − Ũ C reactions that equilibrate the external actions at C,
and by ii) the U i reactions at each Pi node, i.e.

0 = δu ⊤C

(
− Ũ C

)
+
∑

i

δu ⊤i U i (3.13)

=

(
− δu ⊤C +

∑

i

qi δu
⊤
i S iA

−1

)
Ũ C (3.14)

for a general Ũ C action at C, we obtain the six constraint equations
that, by also making the customarily tied nature of the C dofs explicit,

3this condition holds e.g. in the case the Pi nodes lie on the Gxy plane, and the
distribution is symmetric with respect to either the Gx or the Gy axis

4namely d = ΘG
Jxx

, e = ΦG
Jyy

, f = ΨG
Jzz

, but – again – those expression only hold

when Jxy = Jyz = Jzx = 0
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may be cast as

δu C =
[
· · · qiA

−⊤ S ⊤i · · ·
]



...
δu i
...


 , (3.15)

where

δu ⊤C =
[
δuC δvC δwC δθC δϕC δψC

]

δu ⊤i =
[
δui δvi δwi

]

are the virtual generalized displacements of the C and of the Pi nodes.
Since the RBE3 constraint relations are both linear and homoge-

neous, Eq. 3.15 may be equally written with actual finite displacements
{ u C , u i} in place of their { δu C , δu i} virtual counterparts.

In order to rationalize the contribution of the Pi nodes motion to
the C roto-translation, Eq. 3.15 may be recast as

u C =
∑

i

qiA
−⊤ S ⊤i u i = · · · =

[
I − [ x C − xG]∧
0 I

]

︸ ︷︷ ︸
LCG

uG (3.16)

where L CG rigidly ties the u C motion to the

uG =
[
uG vG wG θG ϕG ψG

]⊤

motion of the G centroid, whose translation is in turn assumed as the
[weighted] average translation of the Pi nodes, and whose rotation is
obtained from the cumulative moment of the Pi nodal displacement
vectors, namely



uG
vG
wG


 =

1

m

∑

i

qi u i,



θG
ϕG
ψG


 = J−1

∑

i

qi [ x i − xG]∧ u i

︸ ︷︷ ︸
Pi disps. moment

.

If nodal velocities were used, instead of displacements, we would
define the instantaneous5 motion of G (and of C in turn) as the motion
of an ideal rigid counterpart of the C,G, (Pi, qi) node set such that
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Figure 3.2: Graphical rationalization of the RBE3 kinematic relations.
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equivalent linear momentum and angular momentum are produced,
with respect to the actual – nonrigid – motion of the (Pi, qi) nodes.

A tentative graphical rationalization of the RBE3 kinematic rela-
tions is presented in Figure 3.2. In Fig. 3.2a, a planar Pi, qi distribution
is presented, subject to in-plane nodal motions u i (black vectors); the
u C reference node motion is currently unknown, and to be derived. In
Fig. 3.2b, an average translation (Fig. 3.2b1, blue vectors), and an
average rotation around G (Fig. 3.2b2, green vectors and rotation) are
isolated, applied to G and then rigidly transmitted to C. By subtract-
ing the average roto-translation from each node motion, a residual,
purely deformative Pi node motion is obtained (Fig. 3.2b3, red vec-
tors); such a motion has zero overall linear and angular moments, it is
uncoupled from the motion of both the G point and the C node, and
it is hence unconstrained even in the case of a possibly locked C node.
Fig. 3.2c represents the obtained rototranslation for the tied C node,
along with the Pi displacement field.

Again, in stark contrast to the RBE2 constraint counterpart, any
motion of the Pi nodes that is null in both average translation and ro-
tation – i.e. it is characterized by self-compensating linear and angular
moment contributions, as in

0 =
1

m

∑

i

qi u i, 0 =
∑

i

qi [ x i − xG]∧ u i

is completely disregarded by the constraint equations, and it is hence
left free.

Finally, some variants of the presented formulation are available in
actual FE solver implementations, in particular:

� a subset only of the C node dofs may be involved in the RBE3
constraint, thus deactivating some of the Eq. 3.15 identities;

� a subset only of the Pi displacement components may be involved
in the RBE3 constraint; also, some rotational dofs may be also
involved from selected nodes, in order to compensate for an oth-
erwise singular J inertia matrix;

� for possibly each constraint equation, the tied nature of the in-
volved C dof may transferred to a designated dof taken from the

5since the relative node positioning is allowed to vary in time
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Pi node distribution, thus retaining the independent nature of
the C dofs; it is up to the analyst to choose an alternative dof
that enters the equation with a non-zero coefficient.

3.1.3 Inserts

TODO

3.1.4 Overclosure tyings

TODO
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3.1.5 Inertia relief

Inertia relief6 refers to an analysis procedure that allows unconstrained
systems – or systems otherwise susceptible to stress-free motions – to
be subjected to a quasi-static analysis by taking rigid body inertia
forces into account.

Conventional static analysis cannot be performed for such systems
since, in the absence of constraints, the stiffness matrix is singular. The
structure response is measured relative to a steady state accelerating
frame, whose motion is induced by the (usually nonzero) external load
resultants.

The inertia relief solution procedure provides for three steps, namely
i) the rigid body mode evaluation, ii) the assessment of the inertia re-
lief loads, and iii) the solution of a supported, self-equilibrated static
loadcase within the moving frame.

A set of nodal dofs is supplied, one each expected rigid body mo-
tion, whose imposed displacements values uniquely define the structure
positioning in space; also, they may be employed in supporting the
structure to untangle the stiffness matrix rank-deficiency.

The t l rigid body modes are evaluated by sequentially setting each
of these support dof to unity, while retaining the others to zero, and
solving for the constrained system of nodal equilibrium equations in
the absence of further external loads. Since the tied/retained condi-
tion of the structure dofs does not vary throughout the sequence of
aforementioned loadcases, comprised of the final step introduced in
the following, a single L L ⊤ Cholesky system matrix decomposition
is required by the procedure, whose computational burden is thus not
significantly increased with respect to the usual static solution.

A rigid body, steady state acceleration field is defined as the linear
combination of the so defined t l rigid body modes

d̈ =
[
· · · t l · · ·

]
︸ ︷︷ ︸

T




...
αl
...




︸ ︷︷ ︸
α

, (3.17)

6XXX some cut and paste from the MSC.Marc vol A manual, please rewrite as
required to avoid copyright infringement.
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whose αl coefficients define the modal acceleration vector α . Those
acceleration terms are then evaluated according to the inertial equilib-
rium of the structure under the applied F external loads, condition,
this, that may be stated as

T ⊤M T α = T ⊤ F (3.18)

The projection of the equilibrium equations onto the subspace defined
by the linear span of the t l rigid body mode vectors – i.e. the left
multiplication of both the equation sides by the T ⊤ matrix, is solved
in place of the overdetermined linear system

M T α = F [+R l]

since the R l reaction forces associated to the rigid body constraints
balance the equilibrium residual components that are orthogonal7 to
such allowed configuration subspace.

The inertia relief forces may then be quantified as M T α , and su-
perposed to the initial external loads, thus leading to a self equilibrated
loading condition in the context of the steady state accelerating frame;
by employing the support dofs to establish a positioning constraint set,
the elastic problem may finally be solved in the form

K d = F − M T α , (3.19)

The d displacement components are expressed with respect to a ref-
erence frame that clings to the possibly accelerating structure through
the support dofs; due to the self-equilibrated nature of the applied
loads in the moving frame, reaction forces at supports are zero.

As a closing comment, the MSC.Marc solver employs a lumped
definition for the system mass matrix for evaluating inertia relief forces.

7We note that T⊤ R l = 0 is a smooth or ideal constraint condition, i.e. the R l

reactions are work-orthogonal to the allowed motions.
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3.1.6 Harmonic response analysis

The equilibrium equations of a multiple dof system subject to elastic,
inertial and viscous actions may be stated in the general form

M d̈ + C ḋ + K d = f (t), d = d (t) (3.20)

where:

� M is the mass matrix, which is symmetric and positive definite;

� C is the viscous damping matrix, which is symmetric and posi-
tive semidefinite;

� K is the elastic stiffness matrix, which is symmetric and posi-
tive semidefinite: complex terms may appear within the stiffness
matrix to represent structural damping contributions;

� f (t) is the vector of the external (generalized) forces;

� d (t) collects the system dofs, which vary in time.

The system response is assumed linear – a strong assumption, this,
that hardly holds in complex structures as the automotive chassis under
scrutiny. The lack of nonlinear analysis tools whose modeling and
computational effort is comparable with respect to the one presented in
the present section, pushes for some laxity in the linearity prerequisite
check, and for the acceptance of a certain extent of error.

The applied force is assumed periodic in time, and so is the long
term solution, if linearity holds. Moreover, Fourier decomposition may
be applied, and there is no lack in generality in further assuming an
harmonic forcing term, and hence an harmonic solution. We have

f (t) =
f̄ ejωt + f̄ ∗e−jωt

2
= Re( f̄ ejωt) (3.21)

where the asterisk superscript denotes the complex conjugate variant
of the base vector. We recall that the compact notation

f (t) = f̄ ejωt (3.22)
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extensively employed below defines a complex form for the driving
force, whose real part is the portion which is physically applied to
the nodes over time, i.e.

Re( f̄ ejωt) = Re( f̄ ) cosωt− Im( f̄ ) sinωt (3.23)

This compact formalism is not rigorous but still it is effective, and
hence commonly employed. Any phase difference amongst the applied
nodal excitations may be described by resorting to the complex nature
of the f̄ vector terms.

In the neglection of the transient response, the harmonic tentative
solution

d (t) = d̄ ejωt (3.24)

is substituted within Eq. 3.20, thus obtaining

(
−ω2M + jωC + K

)
d̄ = f̄ (3.25)

where the ejωt time varying, generally nonzero factors are simplified
away.

Expression 3.25 defines a system of linear complex equations, one
each dof, in the complex unknown vector d̄ ; equivalently, each complex
equation and each unknown term may be split into the associated real
and imaginary parts, thus leading to a system of linear, real equations
whose order is twice the number of the discretized structure dofs.

The system matrix varies with the ω parameter, and in particular
its stiffness contribute K is dominant for low ω values, whereas the
C ,M terms acquire relevance with growing ω.

In distributed inertia systems, however, it is a misleading claim
that the stiffness matrix contribution becomes negligible with high ω
values, since – with the notable exception of external loads that are
directly applied to concentrated masses or rigid bodies – the pulsation
is unphysically high above which such behaviour arises.

Since Eqns. 3.25 are independently solved for each ω value, it
constitutes no added complexity to let M , C , K and f̄ vary according
to the same parameter.

Finally, in the absence of the damping-related imaginary terms
within the system matrix, the Eq. 3.25 problem algebraic order is
led back to the bare number of system dofs; in fact, two independent
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real system of equations – that share a common L L ⊤ matrix decom-
position – may be cast for the real and the imaginary parts of d̄ and
f̄ .

3.1.7 Modal analysis

The present paragraph briefly deals with the structure’s natural modes,
i.e. those periodic8 motions that are allowed according to Eq. 3.20, in
the further absence of externally applied loads.

A necessary condition for a motion to endure in the absence of
a driving load is the absence of dissipative phenomena; it is hence
necessary to have a zero C damping matrix, whereas the K stiffness
matrix must be free of imaginary terms. This hypothesis holding, Eq.
3.25 is reduced to the following real-term algebraic form

(
−ω2M + K

)
d̄ = 0 (3.26)

whose nontrivial solutions constitute a set of (ω2
i , d̂ i) generalized eigen-

value/eigenvector pairs, one each system dof, if eigenvalue multiplicity
is taken into account.

In the context of each (ω2
i , d̂ i) pair, ωi is the natural pulsation

(ωi = 2πfi, where fi is the natural frequency), whereas the d̂ i vector
of generalized displacemts is named natural mode.

The extraction of the Eq. 3.25 nontrivial solutions reduces to a
standard eigenvalue problem is the algebraic form is left-multiplied by
the mass matrix inverse, i.e.

(
M−1K − ω2 I

)
d̂ = 0 ; (3.27)

the availability of solvers that specifically approach the generalized
problem avoid such computationally uneconomical preliminary.

It is worth to recall that in the case of eigenvalues with non-unit
multiplicity – concept, this, that is to be contextualized within the lim-
ited precision floating point arithmetics9 – the associated eigenvectors
must be considered only through their linear combination; the specific
selection of the base elements for representing such a subspace (i.e.,

8harmonic in the context of linearly behaving systems
9XXX
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each single eigenvector) derives in fact from the unpredictable inter-
action between the truncation error and the inner mechanics of the
numerical procedure.

Also, the eigenvectors that are associated to eigevalues of unit mul-
tiplicity are returned by the numerical solver in the misleading form of
a definite vector, whereas an arbitrary (both in sign and magnitude)
scaling factor has to be prepended.

In particular, any speculation which is not robust with respect to
such arbitrary scaling (or combination) is of no engineering relevance,
and must be avoided.

Finally, in continuous elasticity, no upper bound exists for natural
frequencies; in fe discretized structure, an apparent upper bound exists,
which depends on local element size10.

A common normalizing rule for the natural modes is the one that
produces a unit modal mass mi, i.e.

mi = d̂ ⊤i M d̂ i = 1 (3.28)

this rule is e.g. adopted by the MSC.Marc solver in its default config-
uration.

The resonant behaviour of the system in correspondence with a
natural frequency may be investigated by substituting the following
tentative solution

x (t) = a d̂ i sin(ωit) (3.29)

within the dynamic equilibrium equations 3.20, with

f(t) = f̂ cos(ωit), (3.30)

and thus obtaining

(
−ω2

i M + K
)
d̂ i︸ ︷︷ ︸

=0

ai sin(ωit) + ωiaiC d̂ i cos(ωit) = f̄ cos(ωit). (3.31)

By simplifying away the generally nonzero time modulating factors,
and by left-multiplying both equation sides by d̂ ⊤ – i.e. by projecting

10In particular, the natural oscillation period for the highest dynamic mode is
estimated with order of magnitude precision as the minimum time it takes a pressure
wave to travel between two different nodes in the discretized structure.
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the equation residual along the subspace defined by the eigenvector
itself, we obtain an amplitude term in the form

ai =
d̂ ⊤ f̄

ωi d̂ ⊤C d̂ i
(3.32)

whose singularity is prevented only a) in the presence of a damping
matrix that associates nonzero and non-orthogonal viscous reactions
to the motion described by the natural mode under scrutiny, or b) if
the driving load is strictly orthogonal to such natural mode, i.e. it
unable to perform periodic work on such a motion. The nature of the
expression 3.32 numerator will be further discussed in the following
paragraph.

3.1.8 Harmonic response through mode superposition

In the case the eigenvalues associated with the dynamic modes are all
distinct11, the following orthogonality conditions hold

d̂ ⊤j M d̂ i = miδij d̂ ⊤j K d̂ i = miω
2
i δij (3.33)

where δij is the Kroneker delta function, and mi = 1 is the i-

th modal mass, which is unitary due to the the d̂ i unit modal mass
normalization.

It is further assumed that it is possible to describe the elastic body
motion through a linear combination of a (typically narrow) subset of
the dynamic natural modes. Such assumption may be rationalized in
two equivalent ways: on one hand, the contribution of the neglected
modes is assumed negligible, and hence ignored; on the other hand, it
is imagined that a set of kinematic constraints is imposed, that rigidly
impede any additional system motion with respect to the chosen set.
According to this latter explanation, reaction forces will be raised that
absorb any equilibrium residual term which is orthogonal with respect
to the allowed displacements.

The subset defined by the first m eigenvectors (1 ≤ m ≪ n) are
commonly employed, whereas different assortments are possible; a con-

11condition, this, that is assumed to hold; a slightly perturbed FE discretiza-
tion may be effective in separating the instances of a theoretically multiple natural
frequency.
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trol calculation perfomed with a wider base may be employed for error
estimation.

By stacking those first m normalized column eigenvectors into the
Ξ matrix below,

Ξ =
[
d̂ 1 · · · d̂ l · · · d̂m

]
, (3.34)

any d̄ configuration belonging to the linear span of the selected modes
may be expressed through a vector of m modal coordinates ξ̄l, as in

d̄ = Ξ ξ̄ (3.35)

.
Due to the natural modes orthogonality conditions 3.33, the Ξ

tranformation matrix diagonalizes both the mass and the stiffness ma-
trices, since

Ξ ⊤M Ξ = I Ξ ⊤K Ξ = Ω = diag(ω2
l ); (3.36)

by appling such transformation to the damping matrix, however, a
dense matrix is generally obtained.

The Rayleigh or proportional damping matrix definition assumes
that the latter may be passably represented as a linear combination of
the mass matrix and of the stiffness matrix: in particular

C = αM + βK (3.37)

where α and β are commonly named mass and stiffness matrix multi-
pliers, respectively; according to such assumption, the damping matrix
is also diagonalized by the Ξ tranformation matrix.

Equation 3.25 algebraic problem may be cast in terms of the m ξl
modal unknowns, thus obtaining

Ξ ⊤
(
−ω2M + jωC + K

)
Ξ ξ̄ = Ξ ⊤ f̄ (3.38)

which reduces to the diagonal form

(
−ω2 I + jω

(
α I + β Ω

)
+ Ω

)
ξ̄ = Ξ ⊤ f̄ , (3.39)

or, equivalently, to the set of m independent complex equations

(
−ω2 + jω

(
α+ βω2

l

)
+ ω2

l

)
ξl = ql, j = 1 . . .m (3.40)
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where ql =
〈
d̂ l, f̄

〉
is the coupling factor between the external load

and the l-th natural mode.
The algebraic equation above may be interpreted as the charac-

teristic equation of an harmonically driven single dof oscillator that
exhibits the following properties:

� its mass is unity;

� its natural frequency equals that of the l-th natural mode ωl;

� its damping ratio ζl is a combination of the two Rayleigh damping
coefficients, i.e.

ζl =
1

2

(
α

ωl
+ βωl

)
;

� the external load real(imaginary) term is defined as the cyclic
work that the external load performs upon a system motion de-
scribed as the sinusoidal (cosinusoidal) modulation in time of the
l-th modal shape, divided by π.12

The uncoupled equations 3.40 may be solved resorting to complex
division arithmetics, thus leading to the definition of the ξ̄l modal am-
plitude and phase terms; in particular we have that the l-th modal
shape is modulated in time according to the function

ξl(t) = Re(ξ̄l) cosωt− Im(ξ̄l) sinωt

=
∣∣ξ̄l
∣∣ cos (ωt+ ψl − ϕl)

whose terms are detailed in the following.
The auxiliary parameters

al = 1− r2l bl = 2ζlrl rl =
ω

ωl

are first defined; we then have the oscillation amplitude and phase

12In the case of a concentrated load that act on a single dof, qj equates the product
of the load magnitude with the associated component in d̂ l, i.e. the generalized
displacement at the specific node, as shown by the FE postprocessor.
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terms

∣∣ξ̄l
∣∣ = |q̄l|

ω2
l

1√
a2l + b2l

ψl = arg(q̄l)

ϕl = arg(al + jbl)

or, equivalently, the real and imaginary parts

Re(ξ̄l) =
1

ω2
l

al Re(q̄l) + bl Im(q̄l)

a2l + b2l

Im(ξ̄l) =
1

ω2
l

al Im(q̄l)− bl Re(q̄l)

a2l + b2l
.
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3.1.9 Linearized pre-buckling analysis

A few notes.
According to the linearized pre-buckling analysis, the structure is

considered in an oxymoronic configuration which is both pre-stressed
and undeformed.

The σ 0 pre-stress condition is evaluated through a linear prelim-
inary analysis of the structure subject to a set of applied loads, and
potentially inhomogeneous constraints; both the preload and the asso-
ciate stress field may be scaled by a common λ amplification factor,
and the structure behaviour is parametrically examined with varying
λ.

The displacement and rotation fields associated this preliminary
analysis are not however retained in the subsequent step, in contrast
to the pre-stress; such looseness is commonly justified based on the
assumed smallness of such deflections.

For each element of the structure, the stiffness matrix is derived
by a) taking into account the contribution of the σ 0 pre-stress to the
internal virtual work, and b) by employing a second order, nonlinear,
large rotation formulation for the B matrix that derives the strain ten-
sor from nodal dofs. Details are here omitted13, and only the following
placeholder formula for the internal virtual work is proposed

δUi =

∫∫∫

V
δ ϵ ⊤

(
σ 0 + D ϵ

)
dV

=

∫∫∫

V

[
B ( d )δ d

]⊤ (
σ 0 + D B(d ) d

)
dV

= . . .

= δ d
((

KM
ej + KG

ej

)
d + o ( d )

)
.

The resulting element stiffness matrix is obtained as the sum of two
distinct contributions; the first contribution KM

ej is named material
stiffness matrix and, in the absence of large element reorientation in
space, it coincides with the customary definition of element stiffness
matrix. The second contribution KG

ej is named geometric stiffness
matrix and it embodies the corrective terms due to the interaction
of the pre-stress with the rotations; such term is invariant with the

13see e.g. reference [13]
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material properties, and it scales with the pre-stress itself, i.e. with the
λ amplification factor. This second contribution embodies the stress
stiffening and stress softening effects.

Both the two terms are obtained by relying on the initial coor-
dinates of the element nodes, thus effectively neglecting the preload-
induced deflections.

The elemental material and geometric stiffness matrix are then as-
sembled into their global counterparts, and contraints are applied that
are consistent14 with the ones employed in deriving the pre-stress.

The following relation is thus obtained in the neighborhood of a
λ-scaled, pre-stressed configuration

(
KM + λKG

)
δ d = δ F (3.41)

that relates a small variation in the externally applied actions δ F with
the required adjustments in the structure configuration δ d for the
sake of equilibrium; the cumulative Km+λK g term is named tangent
stiffness matrix upon its role in locally orienting the equilibrium path.

Of a particular interest is the case of a nonzero variation in config-
uration for which equilibrium is preserved in the absence of external
load variation; such condition is a prerequisite for a bifurcation of the
equilibrium path. We have in particular an homogenous system of
equations (

KM + λiK
G
)
δ d̂ i = 0 (3.42)

whose nontrivial solutions are in form of generalized15 eigenpairs (λi, δ d̂ i),
with λi values that zero the determinant of the tangent stiffness matrix,
and are hence named critical pre-stress (or preload, or load) amplifi-
cation factor.

14not stricty equal in theory, since some variations are allowed with respect in
particular positioning and symmetry constraints. FE packages may however limit
such theoretically allowed redefinition of constraints.

15an equivalent, standard (
A − ηi I

)
v i = 0

eigenproblem may be defined with

A =
[
KM

]−1

KG, λi = −1/ηi, v i = δ d̂ i.
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Figure 3.3: In the case the load that induces the pre-stress state is
subject to inversion, the minimum amplification factor in modulus is
to be considered. On the other hand, if a load inversion may be ex-
cluded, the minimum among the positive amplification factors is to be
considered.

In correspondence of critical λi values, the elastic reactions are
unable to restrain an arbitrary scaled δ d̂ i perturbation of the structure
configuration, and the related variation in stress/strain values, thus
obtaining a indifferent equilibrium condition.
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