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0.1 Basic formulation for plates and shells

0.1.1 Some assumptions for the kinematic model of the
plate

A necessary condition for applying the plate/shell model framework
to a deformable body is that a geometrical midsurface might be, if
only loosely, recognized for such a body. Then, an iterative refinement
procedure1 may be applied to such tentative midsurface guess.

Then, material should be observed as [piecewise-]homogeneous, or
slowly varying in mechanical properties while moving at a fixed distance
from the midsurface.

Of the two outer surfaces, one has to be defined as the upper or top
surface, whereas the other is named lower ot bottom, thus implicitly
orienting the midsurface normal towards the top.

Finally, the body should result fully determined based on a) its
midsurface, b) its pointwise thickness, and c) the through-thickness
distribution of the constituent materials.

The geometrical midsurface is of little significance if the material
distribution is not symmetric2; such midsurface, in fact, exhibits no rel-
evant properties in general. Its definition is nevertheless pretty straigh-
forward.

In the present treatise, a more general reference surface definition is
preferred to its median geometric counterpart; in particular, an offset
term o is considered that pointwisely shifts the geometric midsurface
with respect to the reference surface. A positive offset shifts the mid-
surface towards the top.

With the introduction of the offset term, the reference surface may
be arbitrarily positioned with respect to the body itself; as an example,
an offset set equal to plus or minus half the thickness makes the refer-
ence surface correspondent to the bottom or top surfaces, respectively.

Such offset term becomes fundamental in the Finite Element (FE)
shell implementation, where, in fact, the reference plane is uniquely

1Normal segments may be cast from each point along the midsurface, that end
on the outer body surfaces. The midpoint locus of these segments redefines the
midsurface itself.

2If the unsimmetric laminate is composed by isotropic layers, a reference plane
may be obtained for which the B membrane-to-bending coupling matrix vanishes;
a similar condition may not be verified in the presence of orthotropic layers.
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defined by the position of the nodes, whereas the offset arbitrarily
shifts the geometrical midsurface.

In the case of limited3 curvatures, and for considerations whose
scope is local, the tangent reference plane may be employed in place of
the possibly curve reference surface, thus locally reducing the general
shell treatise to its planar, plate counterpart.

Figure 1 shows the basic kinematic relations for the shear deformable
(Mindlin) plate model; in the undeformed configuration, P is a generic
material point along the plate thickness, and Q is its normal projection
on the reference plane. Such Q point is named reference point for the
through-thickness normal segment it belongs to.

A local reference system is defined, whose third axis z is normal
to the undeformed midsurface; the first in-plane (ip) x axis may be
arbitrarily oriented, e.g. by projecting a global v̂ unit vector, and the
remaining y axis may be construed such that it finalizes the right xyz
triad.

Then, the deformed configuration is considered, and the motion
of both the points is monitored according to two mutually orthogonal
views.

The P displacement components (uP, vP, wP) may be defined as
a function of the motion of its reference point Q, described in terms
of its displacement components (u, v, w), plus the two θ, φ rotation
components with respect to the x, y ip local axes, respectively. Those
angular displacements are defined with respect to the normal segment
orientation, as measured on the orthogonally projected views. After
some cumbersome trigonometric manipulations4 we obtain

uP = u+ z (1 + ε̌z)
cos θ√

1− sin2 φ sin2 θ
sinφ

vP = v − z (1 + ε̌z)
cosφ√

1− sin2 φ sin2 θ
sin θ

wP = w + z

(
(1 + ε̌z)

cosφ cos θ√
1− sin2 φ sin2 θ

− 1

)
,

3with respect to thickness
4in which it may happen to miss some higher order terms, as the author persis-

tently did in previous versions of the present notes

2



i
i

“master” — 2020/4/29 — 1:25 — page 3 — #3 i
i

i
i

i
i

γ̄zx

z

x

w

u

φ̃

y

z

az ≈ z

az sin φ̃ ≈ zφ̃h/2− o

h/2 + o

γ̄yz

z

y

w

+θ

x

z

bz ≈ z

bz sin θ ≈ zθh/2− o

h/2 + o

zx, ⊥ y plane

yz, ⊥ x plane

Q

P

Q

uP

v

vP

undeformed deformed
config. config.

∂w
∂x

∂w
∂y

P

P
Q

P

Q

wP bz cos θ ≈ z

{a, b} =
(1 + ε̌)√

1− sin2 φ sin2 θ
{cos θ, cosφ} ≈ 1

Figure 1: Relevant dimensions for describing the deformable plate kine-
matics. Here, two a, b factors are introduced which reduce to unity for
small rotations and normal strain.
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where z (1 + ε̌z) is the length of the PQ segment on the deformed con-
figuration, which is further scaled by the fractional factors due to pro-
jection along Fig. 1 views.

The ε̌z average z strain term is defined based on the accumulation
of the Poisson shrinkage (or elongation) along the PQ segment, i.e.

ε̌z(z) =
1

z

∫ z

0
εzdς

=
1

z

∫ z

0
− ν

1− ν
(εx + εy) dς,

the second expression holding in the case of isotropic materials only.
The stress component σz which is normal to the reference surface is

in fact assumed to be either zero or negligible. Being a full discussion5

of such a plane stress assumption beyond the scope of the present
contribution (bspc), we limit our treatise to the observation that, in
the inevitably anecdotal case of Fig. 2, the ratio between the oop
σz stress component and its ip counterparts varies with the square
of the ratio between the thickness and an in plane significant length.
The engineering relevance of such a normal stress component rapidly
vanishes with increasing plate thinness. The Fig. 2 examples also
points out the intermediate magnitude decay of the oop shear stresses,
whose normalized form linearly varies with the same thinness ratio.

Such displacement components may be linarized with respect to i)
the small rotations and ii) small εz strain hypotheses, thus obtaining
the following expressions

uP = u+ zφ (1)

vP = v − zθ (2)

wP = w. (3)

5Such assumption is coherent with the free surface conditions at the top and
the bottom skins, and with the moderate thickness of the elastic body, that allows
only a narrow deviation from the boundary values. In fact, the equilibrium of a
partitioned, through-thickness material segment requires that

σz(z) = −
∫ z

−h/2+o

∂τzx
∂x

+
∂τyz
∂y

dz = +

∫ +h/2−o

z

∂τzx
∂x

+
∂τyz
∂y

dz,

where τzx, τyz are the interlaminar, oop shear stress components, whose ip gradient
is limited.
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Figure 2: Normalized stress component magnitude in the case of a
simply supported circular plate subject to normal pressure, according
to the spatial theory of elasticity framework, see [1, p.349]. A ho-
mogeneous and isotropically elastic circular plate of diameter d and
thickness h is simply supported along its perimeter (i.e. apart from
the their transverse component, displacements are free, and so are ro-
tations), and it is loaded by a unit pressure at its upper surface. The
peak magnitude of the transverse stress σz is observed at the pressur-
ized surface, and it equates the pressure value. The oop shear stress
τzr is maximal along the perimeter, and it equates 3

8

(
d
h

)
. The two

equal ip direct stress components σr = σθ reach the peak value of
3(ν+3)

32

(
d
h

)2
+ ν+2

20 in correspondence of the plate center, at the surface;
its thin plate counterpart, σref , which lacks the second term, is taken as
the normalizing stress value. The remaining τrθ, τθz stress components
are zero due to axisymmetry. The commonwise ν = 0.3 Poisson ratio
value is used in tracing the Figure.
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A treatise of the large rotation and/or large strain nonlinear case
is, again, bspc.

According to such linearized expression, the kinematics of the P
points originally6 laying on a through-thickness segment that is normal
at Q to the reference surface may be described as that of a rigid body.

The intrinsic shear related warping is either negated or neglected,
along with any sliding motion of the P points along the segment7.

Also, the behaviour of such a segment is coherent with its rigid
body modeling from the external loads point of view; in particular
the external actions act on the plate deformable body only through
their through-thickness resultants, and no stress/strain components, or
work, are associated by the shell framework to wall squeezing actions,
e.g. laminations.

We thus observe that, according to the shell framework, the follow-
ing external actions are not distinguishable: i) a q pressure applied at
the upper surface, ii) a −q traction applied at the lower surface, iii) a
q differential pressure between the outer surfaces, with p + q applied
at the top, and a generic p applied at the bottom, and iv) a trans-
verse inertial force whose area density is q, namely due to a oppositely
oriented q

ρh acceleration, where ρ is the material density. Also, a fp,
friction induced, x-oriented shear action at the upper surface is not dis-
tinguishable from an analogous distributed force for unit area applied
at the reference surface, plus a y-oriented distributed moment per unit
area, whose magnitude is fp(h/2 + o).

By observing the deformed configurations in Fig. 1, the normal

displacement
(
∂w
∂x ,

∂w
∂y

)
gradient – i.e. the gained slope of the deformed

reference surface, with respect to its original orientation – is made
up of two terms, namely the rotation of the normal segment, which
originates from the accumulation of the flexural curvature, and the
shear compliance, which resembles the transverse slippage typical of a
card deck. The following expressions are derived

6i.e. in the undeformed configuration
7The elision of higher order terms renders the laminate kinematically – but not

elastically – indistinguishable from its counterpart that might derive from a plane
strain assumption.
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∂w

∂x
= γ̄zx − φ (4)

∂w

∂y
= γ̄yz + θ (5)

in which the bar notation employed for the oop shear components
emphasizes their through-thickness average nature.

0.1.2 Strains and stresses, and their generalized coun-
terparts

The ip strain components may hence be derived at the P point through
differentiation, and in particular we have

εx =
∂uP
∂x

=
∂u

∂x
+ z

∂φ

∂x
(6)

εy =
∂vP
∂y

=
∂v

∂y
− z ∂θ

∂y
(7)

γxy =
∂uP
∂y

+
∂vP
∂x

(8)

=

(
∂u

∂y
+
∂v

∂x

)
+ z

(
+
∂φ

∂y
− ∂θ

∂x

)
(9)

It clearly appears from the expressions above that the pointwise
strain values are due to the sum of i) the strain components as observed
at the reference plane,

e =

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 =

 ε̄x
ε̄y
γ̄xy

 (10)

which are named membrane strains8 in the customary case in which
the material is symmetric9 with respect to the reference plane, plus ii)

8 e is an alternative symbol for the more natural, and previously employed ε̄ ,
whose double barred appearance is however terrible.

9or, more generally, elastically balanced

7



i
i

“master” — 2020/4/29 — 1:25 — page 8 — #8 i
i

i
i

i
i

terms that linearly scale with the z distance from such a plane, whose
coefficients

κ =

 +∂φ
∂x

−∂θ
∂y

+∂φ
∂y −

∂θ
∂x

 =

 κx
κy
κxy

 (11)

are named curvatures. The strains at the reference surface, and the
curvatures constitute the plate (or shell) generalized strain component
set, which is e.g. usually returned by Finite Element (fe) solvers, and
allow for the following compact representation of the strain components
at P

ε = e + z κ . (12)

It worth to be stressed that the kinematic assumptions for the plate
model impose a linear through-thickness profile for each single ip strain
component; those components may hence be sampled at the outer sur-
faces alone, without loss of information. It is here anticipated that an
analogous behaviour is proper of the ip stress components if and only
if (iif) the material is along the thickness elastically homogeneous.

The two κx and κy curvatures equate to the inverse of the nor-
mal curvature radii, as sampled along the respective local directions;
those curvatures are positive if the upper plate fibers are stretched,
or, equivalently, if the reference surface acquires convexity if observed
from above – i.e. from a point on the positive z axis.

Figure 3 clarifies the nature of the mixed curvature term κxy, which
is e.g. typical of open thin walled members – and flat plates as a
particular case – subject to torsion10

The ip stress components at P are derived from their strain coun-
terpart by referring to the material elastic constants, and to the plane
stress hypothesis. In the particular case of an isotropic material – the

10the torsional curvature denomination for the κxy term, that the present author
has widely employed in the past, is not so proper nor widespread, so it might be
better avoided. Flexure and torsion are in fact not as uncoupled in the plate realm
as they are in beam theory, and flexure might be conveniently employed as an
umbrella term that also encompass profile (open and thin) wall deformation due to
pure torsion.
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(b)

(c) (d)

(a)

x

y

θ
φ

Figure 3: Positive κxy mixed curvature for the plate element. Subfig-
ure (a) shows the positive γxy shear strain at the upper surface, the ip
undeformed midsurface, and the negative γxy at the lower surface; the
point of sight related to subfigures (b) to (d) are also evidenced. θ and φ
rotation components decrease with x and increase with y, respectively,
thus leading to positive κxy contributions. As shown in subfigures (c)
and (d), the mixed curvature of subfigure (b) evolves into two anti-
clastic bending curvatures if the reference system is aligned with the
square plate element diagonals, and hence rotated by 45◦ with respect
to z.
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generally orthotropic case is treated below – we have σx
σy
τxy

 = σ = D ε = D e + zD κ , (13)

where

D =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 ; (14)

the normal component of strain, which is due to the Poisson shrinkage
alone, takes the form

εz = − ν

1− ν
(εx + εy) . (15)

The attentive reader may observe that no mention is made to the
oop shear stresses, to which a paragraph is devoted below.

Moreover, the absence of transverse shear terms in current para-
graph formulation, and in particular in Eq. 13, hints for the ip and the
oop stress/strain components to be elastically uncoupled; the material
has evidently been implicitly assumed as monoclinic with respect to the
reference surface. Such a condition holds e.g. for isotropic materials,
and for the orthotropic plies usually employed in laminates.

As in the classical theory of beams, stress components are inte-
grated along the relevant unit of analysis, namely the cross section
there, and the normal segment here, to obtain suitable internal action
resultants.

According to the thin plate framework, stress resultants take the
form of forces per unit length along the surface, and they may be
expressed as

q =

 qx
qy
qxy

 =

∫
h
σ dz

=

∫
h

D dz︸ ︷︷ ︸
A

e +

∫
h

D zdz︸ ︷︷ ︸
B

κ (16)
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Figure 4: XXX

in the case of the ip components, whereas for the oop components we
have

qxz =

∫
h
τzxdz qyz =

∫
h
τyzdz. (17)

Those quantities may be interpreted with respect to their (doubled if
single) subscripts as follows: qab is the b component of internal action
that is transmitted through a through-thickness imaginary gate, whose
in plane width is unit and whose normal is oriented along a. According
to this rationalization, the q are also called stress flows.

Besides the internal action resultants of the force kind, by weighting
the stress component contribution based on their z arm we obtain the
moment stress resultants (or moment flows), whose expressions follow

m =

 mx

my

mxy

 =

∫
h
σ zdz

=

∫
h

D zdz︸ ︷︷ ︸
B≡B T

e +

∫
h

D z2dz︸ ︷︷ ︸
C

κ . (18)

A selection of internal action components is represented in Fig. 4
shows, along with the stress distributions they arise from.
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0.1.3 Constitutive equations for the plate

By employing the matrices defined in Eqs. 16 and 18, the cumulative
generalized strain - stress resultants relations for the plate (or for the
laminate) may be summarized in the following expressions[

q

m

]
=

[
A B

B T C

] [
e
κ

]
(19)

which are usually referred to as the constitutive equations of the [lam-
inate] plate, and the coefficient matrix, named constitutive matrix for
the laminate, summarizes the elastic response of the latter.

The contribution of the ip stress/strain components to the elastic
strain energy area density11 is defined based on the previous relation
as

υ† =
1

2

[
q

m

]> [
e
κ

]
(20)

=
1

2

[
e
κ

]> [
A B

B T C

] [
e
κ

]
. (21)

The A and the C minors of the constitutive matrix characterize
the plate stiffness with respect to membrane and flexural load case fam-
ilies respectively; the membrane/flexural coupling stiffness minor B ,
which is in general nonzero, vanishes for if the material is symmetrically
distributed with respect to the reference surface.

In the commonwise case of through-thickness homogeneous mate-
rial, and null offset12 we have

A = hD B = 0 C =
h3

12
D ,

i.e. the membrane stiffness varies linearly with the wall thickness,
the flexural stiffness varies with the cube of the thickness, and the
membrane and the flexural loadings are mutually uncoupled. Such a

11i.e. strain energy per unit reference surface area
12In the presence of a nonzero offset between the reference and the median planes,

the uncoupled nature of the plate membrane/flexural loadings is only formally lost.
If the same problem is considered based on a median reference plane, in fact, such
a property is obviously restored.
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laminate elastic properties dependence on thickness essentially holds
also for laminates, if the through-thickness distribution of the various
materials is kept comparable.

0.1.4 The transverse shear stress/strain components

A full treatise on the title topic is, due to its complexity, bspc; starting
points for further investigation my be found in [2], [3] or in the theory
manual of your favourite fe solver.

The two γ̄yz and γ̄zx transverse shear components are in fact more

directly recognizable as further contributions to the
(
∂w
∂x ,

∂w
∂y

)
nor-

mal deflection gradient, with respect to what is attributable to flex-
ure alone, than through-thickness averages of actual, pointwise shear
strains – see e.g. Figure 1.

Also, the two qxz, qyz stress flow components defined in Eq. 17
are recognized to perform work13 on the same γ̄yz and γ̄zx transverse
shear components, respectively; the transverse shear contribution to
the elastic strain energy per unit ref. surface area is hence

υ‡ =
1

2
qxzγ̄xz +

1

2
qyzγ̄yz. (22)

The constitutive equation for the transverse shear is set at normal
segment (vs. punctual) level, with the declared aim of collecting the
elastic strain energy contributions along the thickness, and they are
usually formulated as

υ‡ =
1

2

[
γ̄xz
γ̄yz

]>
χ

∫
h

G dz︸ ︷︷ ︸
Γ

[
γ̄xz
γ̄yz

]
, (23)

where G is the pointwise constitutive matrix for the transverse shear
components – which is considered through its through-thickness aver-
age, χ is a shear correction factor – which accommodates for possibly
any incongruence in the formulation, and Γ is an emended transverse
shear constitutive matrix. By comparing Eqns. 22 and 23 we also
derive the de facto transverse shear constitutive relation[

qxz
qyz

]
= Γ

[
γ̄xz
γ̄yz

]
. (24)

13in particular, work for unit reference surface area
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for the Mindlin shear deformable plate.
In the case of isotropic materials, G is a diagonal matrix whose

terms equate the shear modulus, i.e.

G =
E

2 (1 + ν)

[
1 0
0 1

]
,

whereas the χ shear correction factor is usually assumed as 5
6 if the

material is through-thickness uniform14; different values are however
proposed in literature, see e.g. [4].

In the case pointwise values are requested for the τzx and τyz stress
components – e.g. in the analysis of interlaminar stresses in composite
laminates, those quantities are derived from the assumed absence of
shear stresses on the lower surface, and by accumulating the ip stress
component contributions to the x and y translational equilibria up to
the desired z sampling height. We hence obtain

τzx(z) = −
∫ z

−h
2

+o

∂σx
∂x

+
∂τxy
∂y

dz (25)

τyz(z) = −
∫ z

−h
2

+o

∂τxy
∂x

+
∂σy
∂y

dz. (26)

The parallel is evident with the Jourawsky theory of shear for beams.

0.1.5 Hooke’s law for the orthotropic lamina

Hooke’s law for the orthotropic material ip stress conditions, with re-
spect to principal axes of orthotropy;

D 123 =

 E1
1−ν12ν21

ν21E1
1−ν12ν21 0

ν12E2
1−ν12ν21

E2
1−ν12ν21 0

0 0 G12

 (27)

 σ1

σ2

τ12

 = T 1

 σx
σy
τxy

  ε1
ε2
γ12

 = T 2

 εx
εy
γxy

 (28)

14please note the parallel with the inverse 1.2 correction factor for the shear
contribution to the beam elastic strain energy, proper of the solid rectangular cross
section.
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where

T 1 =

 m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2

 (29)

T 2 =

 m2 n2 mn
n2 m2 −mn
−2mn 2mn m2 − n2

 (30)

α is the angle between 1 and x;

m = cos(α) n = sin(α) (31)

The inverse transformations may be obtained based on the relations

T−1
1 (+α) = T 1(−α) T−1

2 (+α) = T 2(−α) (32)

Finally

σ = D ε D ≡ D xyz = T−1
1 D 123 T 2 (33)

With regard to the transverse shear constitutive relation, in the
case of an orthotropic material whose oop shear moduli are Gz1 and
G2z we have

G =

[
n2Gz1 +m2G2z mnGz1 −mnG2z

mnGz1 −mnG2z m2Gz1 + n2G2z

]
.

0.1.6 Notes.

A few sparse notes:

• Midplane is ill-defined if the material distribution is not symmet-
ric; the geometric midplane (i.e. the one obtained by ignoring the
material distribution) exhibits no relevant properties in general.
Its definition is nevertheless pretty straighforward.

• If the unsimmetric laminate is composed by isotropic layers, a
reference plane may be obtained for which the B membrane-to-
bending coupling matrix vanishes; a similar condition may not
be verified in the presence of orthotropic layers.

15
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• In the present contribution, the reference plane is preferred to the
usual geometric midplane for expressing the displacement field,
even in the case of homogeneous material or symmetric laminates;
in FE shell element implementation, in fact, the reference plane
is uniquely defined by the position of the nodes, whereas an offset
term may arbitrarily shift the geometrical midsurface.

• Thermally induced distortion is not self-compensated in an un-
symmetric laminate even if the temperature is held constant
through the thickness. Such fact, united to the unavoidable ther-
mal cycles that occurs in manufacturing if not in operation, makes
such configurations pretty undesirable.

0.1.7 An application: the four point bending test speci-
men.

Todo.
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Figure 5: The not-so-trivial four point bending case. Moment fluxes
and curvatures are sampled at the specimen midwidth, whereas they
may vary while moving towards the flanks; the average value of mx

along the width must in fact coincide with m∗x in correspondence with
the load span.
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