
i
i

“master” — 2020/3/5 — 17:08 — page 1 — #1 i
i

i
i

i
i

0.1 Beam axis and cross section definition

A necessary condition for identifying a portion of deformable body as
a beam – and hence applying the associated framework – is that its
centroidal curve is at least loosely recognizable.

Once such centroidal line has been roughly defined, locally perpen-
dicular planes may be derived whose intersection with the body itself
defines the local beam cross section. Then, the G center of gravity posi-
tion may be computed for each of the local cross sections, thus defining
a second, refined centroidal line. A potentially iterative definition for
the beam centroidal axis1 is hence obtained.

A rather arbitrary orientation may then be chosen for the centroidal
curve.

A local cross-sectional reference system may be defined by aligning
the normal z axis with the oriented centroidal curve, and by employing
as the first in-section axis, namely x, the projection onto the cross-
section plane of a given global v vector, that is assumed to be not
parallel to the beam axis.

The second in-section axis y is then derived, in order to obtain
a local Gxyz right-handed coordinate system, whose unit vectors are
ı̂, ̂, k̂.

Such construction of the local reference system for the beam branch
is consistent with most the Finite Element (FE) codes.

If a thin walled profile is considered in place of a solid cross section
member – i.e., the section wall midplane is recognizable too (see para-
graph XXX below), then a curvilinear coordinate s may be defined
that spans the in-cross-section wall midplane. Such in-cross-section
wall midplane consists in a possibly multi-branched curve, which is
parametrically defined by a pair of x(s), y(s) functions, with s span-
ning the conventional [0, l] interval.

In the case material is homogeneous along the wall thickness, the
local thickness value t(s) is some relevance, along with a local through-
wall-thickness coordinate r ∈ [−t(s)/2,+t(s)/2].

Such s, r, in-section coordinates based on the profile wall may be
employed in place of their cartesian x, y counterparts, if favourable.

1here, centroidal curve, centroidal line, centroidal axis, or simply beam axis are
treated as synonyms.
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0.2 Joints and angular points

Beam axis may be discontinuous at sudden body geometry changes; a
rigid body connection is ideally assumed to restrict the relative motion
of the proximal segments.

Such rigid joint modeling may be extended to more complex n-way
joints; if the joint finite stiffness is to be taken into account, it has to
be described through the entries of a rank 6(n − 1) symmetric square
matrix 2.

At joints and at the beam axis angular points the cylindrical bod-
ies obtained by sweeping the cross sections along the centroidal curve
branches do usually overlap, and in general they only loosely mimic
the actual deformable body geometry.

The results obtained through the local application of the elemen-
tary beam theory are of a problematic nature; they may at most be
employed to scale the triaxial local stress/strain fields3 that are evalu-
ated resorting to more complex modelings.

0.3 Cross-sectional resultants for the spatial
beam

At any point along the axis the beam may be notionally split, thus
obtaining two facing cross sections, whose interaction is limited to three
components of interfacial stresses, namely the axial normal stress σzz
and the two shear components τyz, τzx.

Three force resultant components may be defined by integration
along the cross section area, namely the normal force, the y- and the

2i.e., joint stiffness is unfortunately not a scalar value.
3The peak stress values obtained through the elementary beam theory may be

profitably employed as nominal stresses within the stress concentration effect frame-
work.
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x- oriented shear forces, respectively defined as

N =

∫
A
σzzdA

Qy =

∫
A
τyzdA

Qx =

∫
A
τzxdA

Three moment resultant components may be similarly defined, namely
the x- and y- oriented bending moments, and the torsional moment.
However, if the centroid is the preferred fulcrum for evaluating the
bending moments, the below discussed C shear center is employed for
evaluating the torsional moment; the two points might coincide, e.g. if
the cross section is twice symmetric, but they are distinct in general.
We hence define

Mx ≡M(G,x) =

∫
A
σzzydA

My ≡M(G,y) = −
∫
A
σzzxdA

Mt ≡M(C,z) =

∫
A

[τyz(x− xC)− τzx(y − yC)] dA

The applied vector associated to the normal force component (G,Nk̂)
is located at the section center of gravity , whereas the shear force
(C,Qxı̂+Qy ̂) is supposed to act at the shear center; such convention
decouples the energy contribution of force and moment components for
the straight beam.

Cross section resultants may be obtained, based on equilibrium for
a statically determinate structure. The ordinary procedure consists in

• notionally splitting the structure at the cross section whose re-
sultants are under scrutiny;

• isolating a portion of the structure that ends at the cut, whose
locally applied loads are all known; the structure has to be pre-
liminarily solved for the all the constraint reactions that act on
the isolated portion;
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Figure 1: A beam structure.

• setting the equilibrium equations for the isolated substructure,
according to which the cross-sectional resultants are in equilib-
rium with whole loading.

0.4 A worked example

See Figure 1. TODO.
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