

Dipartimento di Ingegneria "Enzo Ferrari"

> FEM Fundamentals and Chassis Design

Sara Mantovani sara.mantovani@unimore.it

Agenda

- Introduction to Maxima
- Maxima operators
- References
- Castigliano's Theorem
- References

Agenda

Introduction to Maxima

- Download Maxima
- Open, close and save Maxima file in Linux
- The main toolbar
- Maxima operators
- References
- Castigliano's Theorem
- References

Introduction

Maxima is a system for the **manipulation of symbolic** and **numerical expressions**, including:

- differentiation,
- integration,
- Taylor series,
- Laplace transforms,
- ordinary differential equations,
- systems of linear equations,
- polynomials,
- vectors, matrices and tensors.

Maxima yields high precision numerical results by using exact fractions, arbitrary-precision integers and variable-precision floating-point numbers. Maxima can plot functions and data in two and three dimensions.

Maxima Download

- 1. In <u>www.google.it</u>
- 2. Find the string data: maxima cas
- 3. Select the first website or alternatively move directly to the link <u>http://maxima.sourceforge.net</u>
- 4. Download the Maxima version (Windows, Linux, IOS) coeherent with your PC operating system.
- 5. Finally, install the program following the instructions.

NOTE: For IOS, the version Maxima 5.36.1 is surely working; althougth, this version is not the most recent version.

Open Maxima in Linux

To invoke Maxima:

- 1) from UNIMORE LAB PC
- Browse and run installer program
- Education
- Maxima Algebra System

2) in a console:

- type maxima and then <enter>

🚳 wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Close and save Maxima in Linux

To exit Maxima: 1) from UNIMORE LAB - type quit()

2) in a console:

- File
- Exit or CTRL+Q

Maxima files are saved as .wxmx

🚳 wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Pronto

25/02/2019

8

– 0 ×

 \wedge

🚳 wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Elabora le celle	
Elabora tutte le celle visibili	Ctrl-R
Elabora tutte le celle	Ctrl-Maiusc-R
Evaluate Cells above this point	Ctrl-Shift-P
Elimina tutti i risultati	
Copia l'inserimento precedente	Ctrl-I
Copia il risultato precedente	Ctrl-U
Complete a parola	Ctrl-K
Mostra il modello	Ctrl-Shift-K
Inserisci cella d'ingresso	
Inserisci cella testo	Ctrl-1
Inserisci cella titolo	Ctrl-2
Inserisci cella sezione	Ctrl-3
Inserisci cella sottosezione	Ctrl-4
Insert Subsubsection Cell	Ctrl-5
Inserisci interruzione di pagina	
Inserisci immagine	
Ripiega tutto	Ctrl-[
Spiega tutto	Ctrl-Alt-]
Comando precedente	Alt-Su
Comando successivo	Alt-Giù
Fondi celle	
Dividi cella	

Pronto

– 0 ×

~

9

🚳 wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

	Interrompi	Ctrl-G
/	Riavvia Maxima	
	Cancella la memoria	
	Aggiungi al percorso	
	Mostra le funzioni	
	Mostra la definizione	
	Mostra le variabili	
	Elimina una funzione	
	Elimina la variabile	
	Mostra/nascondi la visualizzazione del tempo	
	Cambia la finestra 2d	
	Mostra in TeX	
	Manually trigger evaluation	
	internetty and generate netty	

If maxima ever finishes evaluating without wxMaxima realizing this this menu item can force wxMaxima to try to send commands to maxima again.

Pronto

25/02/2019

– 0 X

🚳 wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Risolvi Risolvi (to_poly Trova la radice Radici di polinc	
Trova la radice	
Radici di polinc	
	niale
Radici di polinc	niale (bfloat)
Radici della pol	nomiale (reali)
Risolvi il sistem	lineare
Risolvi il sistem	algebrico
Elimina la varial	ile
Risolvi ODE	
Problema ai val	ori iniziali (1)
Problema ai val	
	lore al contorno
Risolvi ODE cor	Laplace
Al valore	

Pronto

25/02/2019

11

– 0 X

🚳 wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Grafico 2d... Grafico 3d... Formato grafico...

Pronto

- 0 ×

 \wedge

12

🚳 wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

ne modifica view cella maxima equazioni Algebra calcolo Semplifica Disegno Numerico	Aluto	
	Guida di Maxima F1	^
	Guida di Maxima	
· · · · · · · · · · · · · · · · · · ·	Esempio	
	A proposito di	
	Mostra i suggerimenti	
	Tutorial	
	Informazioni sulla compilazione	
	Rapporto bug	
	Controlla gli aggiornamenti	
	Informazioni	
	12 II	

25/02/2019

13

σ×

Agenda

- Introduction to Maxima
- Maxima operators
 - Input and output
 - Starting function kill()
 - Terminator and special characters
 - Assignment (:)
 - Equation (=)
 - Function (:=)
 - **Declarations** assume() **and** define()
 - Numerical evaluation numer and ev()
 - Arithmetic operation and trigonometric functions
 - Differentiation and integrals diff() and integrate()
 - Polynomials
 - System of equations solve() and linsolve()
 - **Two-dimensional plot** plot2d()
- References
- Castigliano's Theorem
- References

Maxima operators Input(%i#) and output (%o#)

Beside the prompt (%i#) the operation might be defined.

Any input must be closed by the semicolumn character (;)

The prompt (%o#) represents the operation output.

NOTE: Maxima is a case-sensitive program therefore as general rule, we suggest to adopt any command/operation/variables in lowercase letter alone.

Starting function kill()

Operators	Symbol
Unbinds all the items in all the infolists.	kill(all);
Removes the variable a with all its assignments and properties	kill(a);

To compute:

- a single operation use CTRL+enter;
- all the instructions from the beginning to the end of the program adopt CTRL+R

Terminator and special characters

Operators	Symbol
Input terminator	;
Input terminator, which suppresses the display of Maxima's computation. <i>This is useful if you are computing some long</i> <i>intermediate result, and you don't want to waste</i> <i>time having it displayed on the screen.</i>	\$
If you want to refer to the immediately preceding result computed by Maxima	00
e is the natural log base	° e
<i>i</i> is the square root of -1	%i
п is equal to 3.14159	%pi

Examples

(%i1) kill(all); (%o0) done	<pre>Special characters %, %pi, %e, %i and numer</pre>
[Input terminator ; or \$	(%i4) %; (%o4) b
(%i1) a; (%o1) a	(%i5) %pi; (%o5) π
$\begin{bmatrix} (\$i2) & a\$ \end{bmatrix}$	(%i6) %pi, numer; (%o6) 3.141592653589793
[(%i3) b; (%o3) b	(%i7) %e; (%o7) %e
	(%i8) %e,numer; (%o8) 2.718281828459045
	(%i9) %i; (%09) %i

Operators	Symbol
Allow the numerical evaluation of an expression in	%, numer;
floating point	

Agenda

- Introduction to Maxima
- Maxima operators
 - Input and output
 - Starting function kill()
 - Terminator and special characters
 - Assignment (:)
 - Equation (=)
 - Function (:=)
 - **Declarations** assume() **and** define()
 - Numerical evaluation numer and ev()
 - Arithmetic operation and trigonometric functions
 - Differentiation and integrals diff() and integrate()
 - Polynomials
 - System of equations solve() and linsolve()
 - **Two-dimensional plot** plot2d()
- References
- Castigliano's Theorem

• References

Assignment : = :=

Operators	Symbol
To assign a value to a variable use <i>column sign</i> , NOT the equal sign	:
The <i>equal sign</i> is used for representing equations NOT an assignment!	=
A function definition $e.g.$ f(x)	:=

Assignment operator (:) To a simple variable

When the left-hand side is a simple variable : evaluates its right-hand side and associates that value with the left-hand side.

The value of 10 is associate and therefore assigned to the variable a.

After the assignment, the variable a is associated to the value 10.

25/02/2019

Assignment operator (:) To an element of a list

When the left-hand side is a subscripted element of a list, a matrix, an array, the right-hand side is assigned to that element. The subscript must name as existing element.

```
[ (%i12) b: [3,pippo,3/5];
(b) [3,pippo, 3/5];
(b) [3,pippo, 3/5]
[ (%i13) b[3];
(%o13) 3/5
[ (%o13) 3/5
[ (%o14) b[3]: puffo;
(%o14) puffo
[ (%i15) b;
(%o15) [3,pippo,puffo]
```

Lists are the basic building block for Maxima. Lists are sequence containers that allow constant time insert and erase operations anywhere within the sequence, and iteration in both directions.

25/02/2019

Assignment operator (:) Multiple assignment

When the left-hand side is a list of simple and/or subscripted variables, the right-hand side must evaluate to a list, and the elements of the right-hand side are assigned to the elements of the left-hand-side, in parallel.

```
\begin{bmatrix} (\$i19) & [c, d, e]: [20, pluto, -3/77]; \\ (\$o19) & I20, pluto, -\frac{3}{77} \end{bmatrix}
\begin{bmatrix} (\$i20) & c; \\ (\$o20) & 20 \end{bmatrix}
\begin{bmatrix} (\$i21) & d; \\ (\$o21) & pluto \end{bmatrix}
\begin{bmatrix} (\$i22) & e; \\ (\$o22) & -\frac{3}{77} \end{bmatrix}
```


Equation operation (=)

Comparison with the assignment operator (:)

A function definition (:=) For a single variable x

 $f(x_1, ..., x_n) := expr$ defines a function named f with arguments $x_1, ..., x_n$ and function body expr. The function body is evaluated every time the function is called.

$$\begin{bmatrix} (\$i28) & expr: (x^3-1)^2; \\ (expr) & (x^3-1)^2 \\ \end{bmatrix} \begin{bmatrix} (\$i29) & f(x) := expr; \\ (\$o29) & f(x) := expr \\ \end{bmatrix} \begin{bmatrix} (\$i30) & f(x); \\ (\$o30) & (x^3-1)^2 \end{bmatrix}$$

A function definition (:=) For a multiple variables y and z

 $f(x_1, ..., x_n) := expr$ defines a function named f with arguments $x_1, ..., x_n$ and function body expr. The function body is evaluated every time the function is called.

(%i1) expr : cos(y) - sin(x);
(%o1) cos(y) - sin(x)
(%i2) F1 (x, y) := expr;
(%o2) F1(x, y) := expr

Agenda

Introduction to Maxima

Maxima operators

- Input and output
- Starting function kill()
- Terminator and special characters
- Assignment (:)
- Equation (=)
- Function (:=)
- **Declarations** assume() **and** define()
- Numerical evaluation numer and ev()
- Arithmetic operation and trigonometric functions
- **Differentiation and integrals** diff() **and** integrate()
- Polynomials
- System of equations solve() and linsolve()
- **Two-dimensional plot** plot2d()
- References
- Castigliano's Theorem

• References

Declarations

assume()

Operators	Symbol
Adds predicates pred_1,, pred_n to the current context. This declaration returns a list whose elements are the predicates added to the context. The predicates pred_1,, pred_r can only be expressed with the relational operators < >= equal notequal >= and >. Predicates cannot be literal equality = or literal	<pre>assume(pred_1,, pred_n);</pre>
inequality !=. (%o31) [xx>0, yy <	<pre>>0, yy<-1, zz>=0); <-1, zz>=0]</pre>
(%i32) assume (eq (%o32) [equal(ww	<pre>ual (ww,0), notequal (qq,1)); , 0), notequal (qq,1)]</pre>

Declarations

define()

Operators	Symbol
Defines a function named f with arguments $x_1,, x_n$ and function body expr. Define always evaluates its second argument. The function so defined may be an ordinary Maxima function (with argument enclosed in the parentheses) or an array function (with arguments enclosed in squared brackets).	— — —
When the first argument of define is an expression on the form $f(x_1,, x_n)$ or $f[x_1,, x_n]$, the function arguments are evaluated but f is NOT evaluated, even if there is already a function or a variable by that name.	

Examples define () vs :=

Numerical evaluation

numer, ev()

Operators	Symbol
Allow the numerical evaluation of an expression in floating point. Numer causes some mathematical function (including exponentiation) with numerical arguments to be evaluated in floating point. It causes variables in expr which have been given numervals to be replaced by their values.	<pre>%, numer;</pre>
Evaluates the expression expr in the enviroment specified by the arguments arg_1, arg_r. The operator ev returns the results (another expression) of the evaluation.	ev(expr, arg_1,, arg_r);

Examples ev()and %,numer

Maxima

Arithmetic operations and trigonometric functions

Operators	Symbol
Addition	+
Subtraction	_
Scalar Multiplication	*
Division	/
Exponentiation	^ or **
Matrix multiplication	•
Square root of x variable	sqrt(x)
Funzione seno	sin(x);
Funzione coseno	cos(x);

Agenda

- Introduction to Maxima
- Maxima operators
 - Input and output
 - Starting function kill()
 - Terminator and special characters
 - Assignment (:)
 - Equation (=)
 - Function (:=)
 - Declarations assume() and define()
 - Numerical evaluation numer and ev ()
 - Arithmetic operation and trigonometric functions
 - **Differentiation and integrals** diff() **and** integrate()
 - Polynomials
 - System of equations solve() and linsolve()
 - **Two-dimensional plot** plot2d()
- References
- Castigliano's Theorem

25/02/2019

• References

Maxima Differentiation and integrals

Operators	Symbol
Differentiation n-th order	<pre>diff(expr, x, n);</pre>
Differentiation of first order Implicit assumption that n is equal to 1.	diff(expr, x);
Indefined integral	<pre>integrate(expr, x);</pre>
Defined integral	<pre>integrate(expr, x, a, b);</pre>

Maxima diff()

Operators	Symbol
Differentiation n-th order. Returns the n-th derivative of expr with respect to variable x.	diff(expr, x, n);
Differentiation of first order Implicit assumption that n is equal to 1. Returns the first derivative of expr with respect to variable x.	diff(expr, x);

Maxima integrate()

Operators	Symbol
Indefined integral Attempts to symbolically compute the integral of expr with respect to x.	<pre>integrate(expr, x);</pre>
Defined integral The defined integral has the limits of integration called a and b. The limits should not contain x, although integrate does not enforce this restriction. a need not be lower than b. If b is equal to a, integrate returns zero.	<pre>integrate(expr, x, a, b);</pre>

Examples diff() and integrate()

 $\begin{bmatrix} (\$i24) & expr: (x^3-1)^2; \\ (expr) & (x^3-1)^2 \end{bmatrix}$ $\begin{bmatrix} (\$i25) & f(x):=expr; \\ (\$o25) & f(x):=expr \end{bmatrix}$ $\begin{bmatrix} (\$i26) & f(x); \\ (\$o26) & (x^3-1)^2 \end{bmatrix}$

P Differential $\begin{bmatrix} (\$i27) & diff(f(x), x, 1); \\ (\$o27) & 6x^2(x^3-1) \end{bmatrix}$ $\begin{bmatrix} (\$i28) & diff_first:\$; \\ (diff_first) & 6x^2(x^3-1) \end{bmatrix}$ $\begin{bmatrix} (\$i29) & diff(f(x), x, 2); \\ (\$o29) & 18 x^4 + 12 x (x^3 - 1) \end{bmatrix}$ $\begin{bmatrix} (\$i30) & diff_sec:\$; \\ (diff_sec) & 18 x^4 + 12 x (x^3 - 1) \end{bmatrix}$ Integral $\begin{bmatrix} (\$i31) & \text{integrate}(f(x), x); \\ (\$o31) & \frac{x^{7}}{7} - \frac{x^{4}}{2} + x \end{bmatrix}$ (%i32) integrate(f(x), x, -2, 1);
(%o32) 405
14

Polynomials

Factorization, simplification and expansion

Operators	Symbol
Factors the expression expr, containing any number of variables or functions, into factors irreducibe over the integer.	factor(expr);
Simplifies the expression expr and all of its subexpressions, including the arguments to non-rational functions.	fullratsimp(expr);
Product of sums and exponentiated sums are multiplied out.	expand(expr);

Examples factor() fullratsimp() expand()

```
 \begin{array}{c} (\$i33) & \text{expr;} \\ (\$o33) & (x^3-1)^2 \end{array} 
\begin{bmatrix} (\$i34) & \text{factor}(\text{expr}); \\ (\$o34) & (x-1)^2 (x^2+x+1)^2 \end{bmatrix}
 [ (%i35) fullratsimp(expr);
  (%o35) x<sup>6</sup>-2x<sup>3</sup>+1
\begin{bmatrix} (\$i36) & expr2: (g+h)^5; \\ (expr2) & (h+g)^5 \end{bmatrix}
  \begin{bmatrix} (\$i37) & \text{expand}(\text{expr2}); \\ (\$o37) & h^5 + 5 g h^4 + 10 g^2 h^3 + 10 g^3 h^2 + 5 g^4 h + g^5 \end{bmatrix}
```


System of equations Numerical method

Operators	Symbol
Solves the algebraic equation expr for the variable x and returns a list of solution equations in x. If expr is not an equation, the equation expr=0 is assumed in its place. x may be omitted if the expr contains only one variable.	· · · · · · · · · · · · · · · · · · ·
Solves a system of simultaneous (linear or non-linear) polynomial equations, and returns a list of solutions lists in the variables.	
Solves a system of simultaneous LINEAR polynomial equations, and returns a list of solutions lists in the variables.	

System of equations

Numerical method: options

Operators	Symbol
Each solved-for variable is bound to its value in the solution of the equations.	globalsolve = true;

Examplelinsolve() and globalsolve=true

```
(%i53) eqn_1: x+z=y;
(eqn_1) z+x=y
\begin{bmatrix} (\$i54) & eqn_2:2*t*x-y=2*t^2; \\ (eqn_2) & 2tx-y=2t^2 \end{bmatrix}
(%i55) eqn_3:y-2*z=2;
(eqn_3) y-2 z=2
(%i56) linsolve([eqn_1, eqn_2, eqn_3], [x,y,z]);
(%o56) [x=t+1,y=2t,z=t-1]
(%i57) x;
(%o57) x
(%i58) linsolve([eqn_1, eqn_2, eqn_3], [x,y,z]), globalsolve=true;
(%o58) [x:t+1,y:2t,z:t-1]
(%159) x;
(%059) t+1
```


Example linsolve() vs solve()

(%i65) %[2];

(%065) [x=0.5202594388652008%i-0.1331240357358706,y=0.07678378523787788-3.608003221870287%i]

Example solve()

Agenda

٠

Introduction to Maxima

Maxima operators

- Input and output
- Starting function kill()
- Terminator and special characters
- Assignment (:)
- Equation (=)
- Function (:=)
- **Declarations** assume() and define()
- Numerical evaluation numer and ev()
- Arithmetic operation and trigonometric functions
- **Differentiation and integrals** diff() **and** integrate()
- Polynomials
- System of equations solve() and linsolve()
- Two-dimensional plot plot2d()
- References
- Castigliano's Theorem

References 25/02/2019

Plotting two-dimensions plot

Operators	Symbol		
Displays one or several plots in two dimensions. When expressions or function name are		x_range,	,
used to define the plots, they should all depend on only one variable var and the use of x_range will be mandatory, to provide the name of the variable and its minimum and maximum values. The syntax for the x_range is [variable, min, max]	—	, plot_n],	,

Agenda

- Introduction to Maxima
- Maxima operators
- References
- Castigliano's Theorem
- References

References

ENGLISH DOCUMENTATION

- <u>http://maxima.sourceforge.net/docs/manual/maxima.html</u>
- <u>http://maxima.sourceforge.net/docs/tutorial/en/minimal-maxima.pdf</u> (miniguide)
- <u>http://superk.physics.sunysb.edu/~mcgrew/phy310/documenta</u> <u>tion/maxima-reference.pdf</u> (extensive guide)

ITALIAN DOCUMENTATION

http://maxima.sourceforge.net/docs/tutorial/it/maxima_1.0consonni.pdf (miniguide)

LAB Maxima file saved as intro_maxima_operators.wxmx

Agenda

- Introduction to Maxima
- Maxima operators
- References

Castigliano's Theorem

- Theorem of least work
- CASE A: Statically determined structure
- CASE B: Statically determined structure
- CASE C: Statically redundant structure (+1 dof)
- CASE D: rollbar- statically redundant structure (+3 dof)
- References

Theorem of least work

"The first partial derivative of the total internal energy (U) in a structure with respect to the (force P) (couple C) applied at any point is equal to the (deflection δ) (angular rotation φ) at the point of application of that (force) in the direction of its line of action (or couple)".

$$\delta = \frac{\partial U}{\partial P};$$
$$\varphi = \frac{\partial U}{\partial C}$$

The theorem is applicable to linearly elastic (Hookean material) structures with constant temperature and unyielding supports. Note that in the above statements:

- force (P) may mean point force or couple (C);
- *displacement* may mean translation (δ) or angular rotation (ϕ).

Theorem of least work

The Castigliano's theorem:

1- applied to a **statically determined structure**, allows the deflection and the angular rotation of the structure to be computed;

2- applied to a **statically redundant structure**, allows the reaction forces to be determined. Therefore, the structure becomes a statically determined structure consequently the deflection and the angular rotation of the redundant structure are also computed.

Castigliano's Theorem Theorem of least work

Considering only **plane** problems, the internal energy (U) of the structure is:

$$U = \int_{l} \left(\frac{M_f^2}{2EJ} + \frac{N^2}{2AE} + \xi \frac{T^2}{2AG} \right) dx$$

where:

I is the length of the structure;

 M_{f} , N, T are the bending moment, normal force and the shear force; A and J are the cross-section area and moment of inertia; E and G are the Young's modulus and shear modulus of the material;

 ξ Is the shear coefficient associated to the evaluation the internal energy done by the shear force, where ξ is 1.2 or 1.11 for rectangular or circular cross-section beam.

Considering a cantilever beam in steel loaded by a concentrated force P at the extremity called point A and fixed to the further extremity, evaluate the deflection of the beam at the point A (δ_A).

Hp) Rectangular cross sectionb: 10 mm, h:20 mm;l: 100 mmP: 10000 N

$$M_f(x) = Px$$
; $T = P$

$$U = \int_{0}^{l} \frac{M_{f}^{2}}{2EJ} dx + \int_{0}^{l} \xi \frac{T^{2}}{2AG} dx = \int_{0}^{l} \frac{P^{2}x^{2}}{2EJ} dx + \int_{0}^{l} \xi \frac{P^{2}}{2AG} dx = \frac{P^{2}l^{3}}{2 \times 3EJ} + \xi \frac{P^{2}l}{2AG} dx$$
$$\delta_{\mathsf{A}} = \frac{\partial U}{\partial P} = \frac{Pl^{3}}{3EJ} + \xi \frac{Pl}{AG}$$

Rectangular cross section b: 10 mm, h:20 mm; l: 100 mm P: 10000 N ξ :1.2 J: b*h³/12: 6666,66 mm⁴ A: b*h: 200 mm² E: 210000 MPa v: 0,3 G: E/[2(1+v)]: 80000 MPa (ca)

$$\delta_{\mathsf{A}} = \frac{\partial U}{\partial P} = \frac{Pl^3}{3EJ} + \xi \frac{Pl}{AG}$$

 $\delta_A = 2,3810 + 0.075 = 2,456 \text{ mm}$

The shear contributes to the deflection of the beam the 3.05 per cent, due to this limited contribution the shear is commonly omitted from the preliminary dimensioning of a structure.

Considering a cantilever beam loaded by a concentrated force P at the midspan of the beam (point B) and fixed to one extremity, evaluate the deflection of the beam at the free extremity of the beam at the point A (δ_A).

NOTE: The point A is an unloaded section of the beam.

"The first partial derivative of the total internal energy (U) in a structure with respect to the force P applied at any point is equal to the deflection δ at the point of application of **that force** in the direction of its line of action".

Hp) the shear contribution has been neglected from the internal energy equation.

A fictitious concentrated force F is applied to the beam, at the point A; at which the deflection of the beam must be evaluate.

At the end of the calculus that force F will be considered as null.

Part (1)

$$M_{f,1}(x) = Fx$$

$$U_1 = \int_0^{l/2} \frac{M_{f,1}^2}{2EJ} dx = \int_0^{l/2} \frac{(Fx)^2}{2EJ} dx = \frac{F^2}{2EJ} \int_0^{l/2} x^2 dx = \frac{F^2}{2EJ} \frac{x^3}{3} \Big|_0^{l/2} = \frac{F^2}{2EJ} \frac{l^3}{3 \times 8} = \frac{F^2 l^3}{48EJ}$$

Mf

2

Total internal energy of the structure (U)

$$U = U_1 + U_2 = \frac{F^2 l^3}{48EJ} + \frac{1}{48EJ} \left(P^2 l^3 + 7F^2 l^3 + 5PF l^3 \right)$$
$$= \frac{1}{48EJ} \left(P^2 l^3 + 8F^2 l^3 + 5PF l^3 \right)$$

The fictitious concentrated force F is assume null, at the conclusion of the calculus. *LAST EVALUATION!!!*

$$\delta_{\mathsf{A}} = \frac{\partial U}{\partial F}\Big|_{F=0} = \frac{1}{48EJ} \left(16Fl^3 + 5Pl^3\right)\Big|_{F=0}$$
$$= \frac{1}{48EJ} 5Pl^3 = \frac{5Pl^3}{48EJ}$$

Agenda

- Introduction to Maxima
- Maxima operators
- References

Castigliano's Theorem

- Theorem of least work
- CASE A: Statically determined structure
- CASE B: Statically determined structure
- CASE C: Statically redundant structure (+1 dof)
- CASE D: Rollbar- statically redundant structure (+3 dof)
- References

CASE C: Statically redundant structure (+1dof)

Considering a beam:

- loaded by a concentrated force P at the midspan of the beam (point B);
- fixed to right-hand side extremity;
- simply-supported to the left-hand side extremity at the point A

Evaluate the reaction force (F) acting at the support at point A of the structure.

The equilibrium equations are not sufficient to calculate the reaction forces acting on the beam.

Therefore, a compatibility equation related to the deformation of the structure must be imposed.

In this case, the A-point of the beam does NOT be able to move vertically.

CASE C: Statically redundant structure (+1dof)

CASE C: Statically redundant structure (+1dof)

Total internal energy of the structure (U)

$$U = U_1 + U_2 = \frac{F^2}{2EJ} \frac{l^3}{3 \times 8} + \frac{1}{2EJ} \left[F^2 \left(\frac{l^3}{3 \times 8} + \frac{l^2}{4} \frac{l}{2} + 2\frac{l}{2} \frac{l^2}{2 \times 4} \right) + P^2 \frac{l^3}{3 \times 8} - 2PF \left(\frac{l^3}{3 \times 8} + \frac{l}{2} \frac{l^2}{2 \times 4} \right) \right]$$

Evaluate the deflection of the beam at the point A (δ_A) by the first partial derivative of the total internal energy (*U*) proper of the structure with respect to the force *F*.

Imposing that the deflection (δ_A) is forbidden due to the presence of the support acting at the point A, the unknown of the problem is the vertical reaction force (equal to *F*) that the support induced into the structure.

$$\delta_{\mathsf{A}} = \frac{\partial U}{\partial F} = \frac{2F}{2EJ} \frac{l^3}{3 \times 8} + \frac{1}{2EJ} \left[2F \left(\frac{l^3}{3 \times 8} + \frac{l^2}{4} \frac{l}{2} + 2\frac{l}{2} \frac{l^2}{2 \times 4} \right) - 2P \left(\frac{l^3}{3 \times 8} + \frac{l}{2} \frac{l^2}{2 \times 4} \right) \right] = \frac{1}{2EJ} \left[\frac{2Fl^3}{3} - \frac{5Pl^3}{24} \right] = 0 \quad \Rightarrow \quad F = \frac{5P}{16}$$

CASE D: Roll bar - Statically redundant structure (+3 dof)

CASE D: Roll bar - Statically redundant structure (+3 dof)

25/02/2019

Considering a simplified roll bar:

- fixed to the extremities;

- loaded by a lateral concentrated force (P) acting at the point B of the structure.

Evaluate the deflection (δ_B) acting at the point B of the structure, located at the maximum point at which the driver and the passenger can reach during a rollover crash event.

CASE D: Roll bar - Statically redundant structure (+3 dof)

CASE D: Roll bar - Statically redundant structure (+3 dof)

- 1. Application of a fictitious force *F* at point B;
- 2. Evaluation of the equilibrium of the structure, to retrieve the reaction forces and moment acting at E;
- Definition of a linear shape functions in the [0,1] interval;
- 4. Definition of the bending moment acting on the portions of the structure, called as Mf_AB, Mf_BC, Mf_CD, Mf_DE;
- 5. Definition of the elastic internal energy related to the various beam segments U_AB, U_BC, U_CD, U_DE;
- 6. Evaluation of the total elatic internal energy of the structure defined as the sum of the various beam segments.

CASE D: Roll bar - Statically redundant structure (+3 dof)

- 7. Application of the Castigliano's theorem for obtaining the displacements and the rotation at A named as uA, vA, rA.
- 8. Definition of kinematic congruence with respect to the clamp constraint in A is to be enforced, by the mean of a system of (linear) equations.
- 9. Evaluation of the redundant reaction force and moment acting at point A (XA, YA, CA) starting from the system of equation imposed by the kinematic congruence equations (see point 8).

CASE D: Roll bar - Statically redundant structure (+3 dof)

- 10. Evaluation of the overall internal energy of the structure *U*, substituting the definition of XA, YA, CA. The U relation is function of the external load *P* and of the fictitious force *F* acting at B.
- 11. The displacement at the B point is evaluated through the Castigliano's theorem;
- 12. The fictitious nature of *F* may now be enforced to be null.

Q.E.D.

Agenda

- Introduction to Maxima
- Maxima operators
- References
- Castigliano's Theorem
- References

References

ENGLISH DOCUMENTATION

Shigley, J. E. (2011). Shigley's mechanical engineering design. Tata McGraw-Hill Education. Section 4.8 pp. 164-169.

https://eclass.teicrete.gr/modules/document/file.php/TM114/shigley-machine-design.pdf

ITALIAN DOCUMENTATION Strozzi, A. (1998). Costruzione di Macchine, Pitagora Ed., Bologna. Strozzi, A. (2016). Fondamenti di Costruzione di Macchine, Pitagora Ed., Bologna.

LAB Maxima file saved as rollbar_def.wxmx

"Machines can never think as humans do but just because something thinks differently from you, does it mean it's not thinking?"

A. Turing

Sara Mantovani Via Vivarelli, 10 41125, Modena, Italy Mail: sara.mantovani@unimore.it Mail: millechili@unimore.it Phone: +39 059 2056280