UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Dipartimento di Ingegneria
 "Enzo Ferrari"

FEM Fundamentals and Chassis Design

Sara Mantovani
sara.mantovani@unimore.it

Agenda

- Introduction to Maxima
- Maxima operators
- References
- Castigliano's Theorem
- References

25/02/2019

Agenda

- Introduction to Maxima
- Download Maxima
- Open, close and save Maxima file in Linux
- The main toolbar
- Maxima operators
- References
- Castigliano's Theorem
- References

Introduction

Maxima is a system for the manipulation of symbolic and numerical expressions, including:

- differentiation,
- integration,
- Taylor series,
- Laplace transforms,
- ordinary differential equations,
- systems of linear equations,
- polynomials,
- vectors, matrices and tensors.

Maxima yields high precision numerical results by using exact fractions, arbitrary-precision integers and variable-precision floating-point numbers.
Maxima can plot functions and data in two and three dimensions.

Maxima
 Download

1. In www.google.it
2. Find the string data: maxima cas
3. Select the first website or alternatively move directly to the link http://maxima.sourceforge.net
4. Download the Maxima version (Windows, Linux, IOS) coeherent with your PC operating system.
5. Finally, install the program following the instructions.

NOTE: For IOS, the version Maxima 5.36 .1 is surely working; althougth, this version is not the most recent version.

Open Maxima in Linux

To invoke Maxima:

1) from UNIMORE LAB PC

- Browse and run installer program
- Education
- Maxima Algebra System

2) in a console:

- type maxima and then <enter>
(101) wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Close and save Maxima in Linux

To exit Maxima:

1) from UNIMORE LAB

- type quit()

2) in a console:

- File
- Exit or CTRL+Q

Maxima files are saved as .wxmx

The Main Toolbar

(01) wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Nuovo	Ctrl-N
Apri...	Ctrl-O
Apri recenti	Ctrl-S
Salva	Shift-Ctrl-S
Salva come...	Ctrl-L
Carica il pacchetto	Ctrl-B
File batch...	
Esporta...	Ctrl-P
Stampa...	Ctrl-Q
Esci	

The Main Toolbar

(14) wxMaxima 16.04 .2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

	Elabora le celle	
	Elabora tutte le celle visibili	Ctrl-R
	Elabora tutte le celle	Ctrl-Maiusc-R
	Evaluate Cells above this point	Ctrl-Shift-P
	Elimina tutti i risultati	
	Copia l'inserimento precedente	Ctrl-I
	Copia il risultato precedente	Ctrrl-U
	Complete a parola	Ctri-K
	Mostra il modello	Ctrl-Shift-K
	Inserisci cella d'ingresso	
	Inserisci cella testo	Ctrl-1
	Inserisci cella titolo	Ctrl-2
	Inserisci cella sezione	Ctrl-3
	Inserisci cella sottosezione	Ctrl-4
	Insert Subsubsection Cell	Ctrl-5
	Inserisci interruzione di pagina	
	Inserisci immagine...	
	Ripiega tutto	Ctrl-[
	Spiega tutto	Ctrl-Alt-]
	Comando precedente	Alt-Su
	Comando successivo	Alt-Giù
	Fondi celle	
	Dividi cella	

The Main Toolbar

(410) wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Interrompi
Riavvia Maxima
Cancella la memoria
Aggiungi al percorso...
Mostra le funzioni
Mostra la definizione..
Mostra le variabili
Elimina una funzione..
Elimina la variabile...
Mostra/nascondi la visualizzazione del tempo
Cambia la finestra 2d
Mostra in TeX
Manually trigger evaluation

The Main Toolbar

(410) wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Risolvi...
Risolvi (to_poly)..
Trova la radice...
Radici di polinomiale
Radici di polinomiale (bfloat)
Radici della polinomiale (reali)
Risolvi il sistema lineare...
Risolvi il sistema algebrico...
Elimina la variabile...
Risolvi ODE...
Problema ai valori iniziali (1)...
Problema ai valori iniziali (2)
Problema del valore al contorno ..
Risolvi ODE con Laplace...
Al valore...

The Main Toolbar

(40) wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

The Main Toolbar

(40) wxMaxima 16.04.2 [non salvato*]

File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

Guida di Maxima
Guida di Maxima Esempio...
A proposito di..
Mostra i suggerimenti...
Tutorial
Informazioni sulla compilazione
Rapporto bug
Controlla gli aggiornamenti
Informazioni

Agenda

- Introduction to Maxima
- Maxima operators
- Input and output
- \quad Starting function kill ()
- Terminator and special characters
- Assignment (:)
- Equation (=)
- Function (: =)
- Declarations assume() and define()
- Numerical evaluation numer and ev ()
- Arithmetic operation and trigonometric functions
- Differentiation and integrals diff() and integrate()
- Polynomials
- System of equations solve() and linsolve()
- Two-dimensional plot plot2d()
- References
- Castigliano's Theorem
- References

Maxima operators Input (\%i\#) and output (\%o\#)

Beside the prompt (\%i\#) the operation might be defined.

Any input must be closed by the semicolumn character (;)
The prompt (\%o\#) represents the operation output.

wxMaxima 16.04.2 [non salvato*]
File Modifica View Cella Maxima Equazioni Algebra Calcolo Semplifica Disegno Numerico Aiuto

```
F(%il) kill(all);
```

 done
 NOTE: Maxima is a case-sensitive program therefore as general rule, we suggest to adopt any command/operation/variables in lowercase letter alone.

Starting function

```
kill()
```

Operators	Symbol
Unbinds all the items in all the infolists.	kill (all);
Removes the variable a with all its assignments and properties	kill (a);

To compute:

- a single operation use CTRL+enter;
- all the instructions from the beginning to the end of the program adopt CTRL+R

Terminator and special characters

Operators	Symbol
Input terminator	$;$
Input terminator, which suppresses the display of	$\$$
Maxima's computation.	
This is useful if you are computing some long	
intermediate result, and you don't want to waste	
time having it displayed on the screen.	

Examples

```
[(%i1) }\begin{array}{l}{\mathrm{ kill(all);}}\\{(%00) done}
[ Input terminator ; or $
F(%i1) a;
E(%i2) a$
F(%i3) 
```

```
Special characters %, %pi, %e, %i
and numer
F(%i4) %;
[(804) b
f(%i5) %pi;
\pi
F(%i6) %pi, numer;
3.141592653589793
F(%i7) 
F(%i8) %e,numer;
(%08) 2.718281828459045
```


Operators

Symbol

Allow the numerical evaluation of an expression in $\%$, numer; floating point

Agenda

- Introduction to Maxima
- Maxima operators
- Input and output
- \quad Starting function kill ()
- Terminator and special characters
- Assignment (:)
- Equation (=)
- Function (: =)
- Declarations assume() and define()
- Numerical evaluation numer and ev ()
- Arithmetic operation and trigonometric functions
- Differentiation and integrals diff() and integrate()
- Polynomials
- System of equations solve() and linsolve()
- Two-dimensional plot plot2d()
- References
- Castigliano's Theorem

Assignment

```
: = :=
```

Operators	Symbol
To assign a value to a variable use column sign,	$:$
NOT the equal sign	
The equal sign is used for representing equations NOT an assignment!	$=$
A function definition e.g. $\mathrm{f}(\mathrm{x})$	$:=$

Assignment operator (:)

To a simple variable

When the left-hand side is a simple variable : evaluates its right-hand side and associates that value with the lefthand side.
$\left[\begin{array}{ll}(\% i 10) & a ; \\ (\% 010) & a\end{array}\right.$
$\left[\begin{array}{ll}(\% \text { i11 }) & a: 10 ; \\ (\mathrm{a}) & 10\end{array}\right.$
$\left[\begin{array}{ll}(\% i 12) & a ; \\ (\% \circ 12) & 10\end{array}\right.$

The value of 10 is associate and therefore assigned to the variable a.
After the assignment, the variable a is associated to the value 10 .

Assignment operator (:)

To an element of a list

When the left-hand side is a subscripted element of a list, a matrix, an array, the right-hand side is assigned to that element. The subscript must name as existing element.

```
P(%i12) b: [3,pippo,3/5];
(b) [3,pippo, 缶]
P(%i13) b[3];
    3
[(%114) })\mathrm{ b[3]: puffo;
F(%i15) b;
[(%o15) [3,pippo,puffo]
```

Lists are the basic building block for Maxima. Lists are sequence containers that allow constant time insert and erase operations anywhere within the sequence, and iteration in both directions.

Assignment operator (:)

Multiple assignment

When the left-hand side is a list of simple and/or subscripted variables, the right-hand side must evaluate to a list, and the elements of the right-hand side are assigned to the elements of the left-hand-side, in parallel.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
(\% i 19) & {[c, ~ d, ~ e]:[20, p l u t o,-3 / 77] ;} \\
(\% \circ 19) & {\left[20, \text { pluto, }-\frac{3}{77}\right]}
\end{array}\right.} \\
& {\left[\begin{array}{ll}
(\% i 20) & c ; \\
(\% \circ 20) & 20 \\
\left(\frac{1}{\%} i 21\right) & \text { di } \\
(\% \circ 21) & \text { pluto } \\
{[(\% i 22)} & \text { e; } \\
(\% \circ 22) & -\frac{3}{77}
\end{array}\right.}
\end{aligned}
$$

Equation operation (=)

Comparison with the assignment operator (:)
$\left[\begin{array}{ll}(\% i 10) & a ; \\ (\% \circ 10) & a\end{array}\right.$
$\left[\begin{array}{ll}(\% i 11) & a: 10 ; \\ (\mathrm{a}) & 10 \\ {[(\% i 12)} & a ; \\ (\% 12) & 10\end{array}\right.$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { (\%i24) eqn } 1:-{ }^{\mathrm{a}} \mathrm{a}^{\star \star \mathrm{x}-5 \star \mathrm{y}=17 \text {; }} \\
\text { (eqn1) } \\
-\mathrm{a} 0 \mathrm{x}-5 \mathrm{y}=17
\end{array}\right.} \\
& {\left[\begin{array}{ll}
-(\% i 25) & \text { eqn2: } \quad-a 1 * x+3+y=29 ; \\
(\text { eqn2 }) & y+_a 1 x+3=29
\end{array}\right.} \\
& {\left[\begin{array}{ll}
(\% \text { i26) } & \text { eqn1; } \\
(\% \circ 26) & -a 0 x-5 y=17
\end{array}\right.} \\
& {\left[\begin{array}{ll}
(\% i 27) & \text { eqn2; } \\
(\% 027) & y+_a 1 x+3=29
\end{array}\right.}
\end{aligned}
$$

A function definition (:=)

For a single variable x

$\mathrm{f}\left(\mathrm{x} _1, \ldots, \mathrm{x}_{-} \mathrm{n}\right):=\operatorname{expr}$ defines a function named f with $\operatorname{arguments} \bar{x} _1, \ldots, x_{-} n$ and function body expr. The function body is evaluated every time the function is called.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
(\% i 28) & \text { expr: }\left(x^{\wedge} 3-1\right)^{\wedge} 2 ; \\
(\operatorname{expr}) & \left(x^{3}-1\right)^{2} \\
{[(\% i 29)} & f(x):=\operatorname{expr} ; \\
(\% \circ 29) & f(x):=\operatorname{expr} \\
{[(\% i 30)} & f(x) ; \\
(\% \circ 30) & \left(x^{3}-1\right)^{2}
\end{array}\right.}
\end{aligned}
$$

A function definition (:=)

For a multiple variables y and z

$\mathrm{f}\left(\mathrm{x} _1, \ldots, x_{_} \mathrm{n}\right):=\operatorname{expr}$ defines a function named f with arguments $x_{_} 1, \ldots, x_{-} n$ and function body expr. The function body is evaluated every time the function is called.

```
(%i1) expr : cos(y) - sin(x);
(%o1) }\operatorname{cos}(y)-\operatorname{sin}(x
(%i2) F1 (x, y) := expr;
(%o2) F1 (x, y) := expr
```


Agenda

- Introduction to Maxima
- Maxima operators
- Input and output
- \quad Starting function kill ()
- Terminator and special characters
- Assignment (:)
- Equation (=)
- Function (: =)
- Declarations assume() and define()
- Numerical evaluation numer and ev ()
- Arithmetic operation and trigonometric functions
- Differentiation and integrals diff() and integrate()
- Polynomials
- System of equations solve() and linsolve()
- Two-dimensional plot plot2d()
- References
- Castigliano's Theorem
- References

Declarations

assume ()

Operators Symbol
Adds predicates pred_1, ..., assume (pred_1,, pred_n);

```pred_n to the current context. Thisdeclaration returns a list whoseelements are the predicates added tothe context.
The predicates pred_1, ..., pred_r
can only be expressed with the
relational operators < >= equal
notequal >= and >. Predicates
cannot be literal equality = or literal
inequality !=.
```

```
assume (xx>0, yy<-1, zz>=0);
```

assume (xx>0, yy<-1, zz>=0);
[xx>0,yy<-1,zz>=0]
[xx>0,yy<-1,zz>=0]
F(%i32) assume (equal (ww,0), notequal (qq,1));
F(%i32) assume (equal (ww,0), notequal (qq,1));
[equal(ww,0), notequal (}qq,1)

```
[equal(ww,0), notequal ( }qq,1)
```


Declarations

define()

```
Operators
Defines a function named f with define(f(x_1, ..., x_n), expr);
arguments x_1, ..., x_n and function define(f[x_1, ..., x_n], expr);
body expr. Define always evaluates its
second argument. The function so
defined may be an ordinary Maxima
function (with argument enclosed in the
parentheses) or an array function (with
arguments enclosed in squared
brackets).
When the first argument of define is an
expression on the form f(x_1, ...,
x_n) or f[x_1, ..., x_n], the function
arguments are evaluated but f is NOT
evaluated, even if there is already a
function or a variable by that name.
```


Examples

define () VS :=

```
(%i1) expr : cos(y) - sin(x);
(%o1) }\operatorname{cos}(y)-\operatorname{sin}(x
(%i2) define (F1 (x, y), expr);
(%o2) F1(x, y) := cos(y) - sin(x)
(%i3) F1 (a, b);
(%o3) cos(b) - sin(a)
(%i4) F2 (x, y) := expr;
(%०4) F2(x, y) := expr
(%i5) F2 (a, b);
(%o5) cos(y) - sin(x)
```


Numerical evaluation

numer, ev()

```
Operators
Allow the numerical evaluation of an
expression in floating point.
Numer causes some mathematical
function (including exponentiation)
with numerical arguments to be
evaluated in floating point. It causes
variables in expr which have been
given numervals to be replaced by
their values.
Evaluates the expression expr in the ev(expr, arg_1, ..., arg_r);
enviroment specified by the
arguments arg_1, ... arg_r.
The operator ev returns the results
(another expression) of the
evaluation.
```


Examples

ev () and \%, numer

$$
\begin{aligned}
& {\left[\begin{array} { l l }
{ (\% i 2 8) } & { \text { expr: } (x ^ { \wedge } 3 - 1) ^ { \wedge } 2 ; } \\
{ (\text { expr }) } & { (x ^ { 3 } - 1) ^ { 2 } }
\end{array} \quad \left[\begin{array}{ll}
(8138) & \text { expr; } \\
(8038) & \left(x^{3}-1\right)^{2}
\end{array}\right.\right.} \\
& \text { F(\%i29) } \mathrm{f}(\mathrm{x}):=\operatorname{expr} \text {; } \\
& {\left[\begin{array}{ll}
(\%) 29) & f(x):=e x p r
\end{array}\right.} \\
& P(\% \mathrm{i} 30) \quad \mathrm{f}(\mathrm{x}) \text {; } \\
& {\left[(\% 030)\left(x^{3}-1\right)^{2}\right.} \\
& \begin{array}{ll}
\mathrm{F} \text { (8i39) } & \text { \%, numer, } \mathrm{x}=3 / 2 \text {; } \\
(8039) & 5.640625
\end{array} \\
& {\left[\begin{array}{ll}
(8 i 40) & \text { ev (expr, } \mathrm{x}=3 / 2) ; \\
(8040) & \frac{361}{64}
\end{array}\right.} \\
& \begin{array}{ll}
\mathrm{F}_{(8 i 52)} & \text { ev (expr, } \mathrm{x}=3 / 2), \text { numer; } \\
(8052) & 5.640625
\end{array}
\end{aligned}
$$

Maxima

Arithmetic operations and trigonometric functions

Operators	Symbol
Addition	+
Subtraction	-
Scalar Multiplication	\star
Division	$/$
Exponentiation	\wedge or $* *$
Matrix multiplication	\cdot
Square root of x variable	$\operatorname{sqrt}(x)$
Funzione seno	$\sin (x) ;$
Funzione coseno	$\cos (x) ;$

Agenda

- Introduction to Maxima
- Maxima operators
- Input and output
- Starting function kill()
- Terminator and special characters
- Assignment (:)
- Equation (=)
- Function (: =)
- Declarations assume () and define ()
- Numerical evaluation numer and ev ()
- Arithmetic operation and trigonometric functions
- Differentiation and integrals diff() and integrate()
- Polynomials
- System of equations solve() and linsolve()
- Two-dimensional plot plot2d()
- References
- Castigliano's Theorem
- References

Maxima
 Differentiation and integrals

Operators	Symbol
Differentiation n -th order	diff $(\operatorname{expr}, \mathrm{x}, \mathrm{n}) ;$
Differentiation of first order Implicit assumption that n is equal to 1.	$\operatorname{diff}(\operatorname{expr}, \mathrm{x}) ;$
Indefined integral	integrate $(\operatorname{expr}, \mathrm{x}) ;$
Defined integral	integrate $(\operatorname{expr}, \mathrm{x}, \mathrm{a}, \mathrm{b}) ;$

Maxima

diff()

Operators	Symbol
Differentiation n-th order. Returns the n-th derivative of expr with respect to variable x.	$\operatorname{diff}(\operatorname{expr}, \mathrm{x}, \mathrm{n})$;
Differentiation of first order Implicit assumption that n is equal to 1.	$\operatorname{diff}(\operatorname{expr}, \mathrm{x})$;
Returns the first derivative of expr with respect to variable x.	

Maxima

```
Operators
Indefined integral
Attempts to symbolically compute
the integral of expr with respect to
x.
Defined integral integrate(expr, x, a, b);
The defined integral has the limits
of integration called a and b. The
limits should not contain x, although
integrate does not enforce this
restriction.
a need not be lower than b.
If b is equal to a, integrate returns
zero.
```


Symbol

```
Indefined integral
Attempts to symbolically compute
the integral of expr with respect to x.
Defined integral integrate (expr, \(x, a, b)\);
The defined integral has the limits of integration called a and b. The limits should not contain \(x\), although integrate does not enforce this restriction.
a need not be lower than b.
If \(b\) is equal to \(a\), integrate returns zero.
```

```
integrate(expr, x);
```

```
integrate(expr, x);
```


Examples

diff() and integrate()

$$
\begin{aligned}
& \nabla(\% i 24) \\
& {\left[\begin{array}{ll}
(\operatorname{expr}) & \left(x^{3}-1\right)^{2} \\
\hline(\% i 25) & f(x):=\operatorname{expr} \\
(\% 25) & f(x):=\operatorname{expr} \\
(\% i 26) & f(x) ; \\
(\% 26) & \left(x^{3}-1\right)^{\wedge}
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\text { (\%i28) } & \text { diff_first: \%; } \\
(\text { (diff_first }) & 6 x^{2}\left(x^{3}-1\right)
\end{array}\right.} \\
& {\left[\begin{array}{ll}
(\% i 28) & \text { diff_first: \% ; } \\
(\text { diff_first }) & 6 x^{2}\left(x^{3}-1\right)
\end{array}\right.} \\
& \text { [Differential } \\
& {\left[\begin{array}{ll}
-(\% i 27) & \operatorname{diff}(f(x), x, 1) ; \\
(\% 027) & 6 x^{2}\left(x^{3}-1\right)
\end{array}\right.} \\
& P(\% i 29) \operatorname{diff}(f(x), x, 2) \text {; } \\
& \text { [} 8029) 18 x^{4}+12 x\left(x^{3}-1\right) \\
& {\left[\begin{array}{ll}
-(\% i 30) & \text { diff_sec: } \% ; \\
(\text { diff_sec }) & 18 x^{4}+12 x\left(x^{3}-1\right)
\end{array}\right.} \\
& \text { E Integral } \\
& {\left[\begin{array}{ll}
(\% i 31) & \text { integrate }(f(x), x) ; \\
(\% 031) & \frac{x^{7}}{7}-\frac{x^{4}}{2}+x
\end{array}\right.} \\
& f(\% i 32) \quad \text { integrate (} f(x), x,-2,1) \text {; } \\
& \text { (\%032) } \frac{405}{14}
\end{aligned}
$$

Polynomials
 Factorization, simplification and expansion

Operators	Symbol
Factors the expression expr, containing any number of variables or functions, into factors irreducibe over the integer.	factor (expr);
Simplifies the expression expr and all of its subexpressions, including the arguments to non-rational functions.	fullratsimp (expr);
Product of sums and exponentiated sums are multiplied out.	expand (expr);

Factors the expression expr,
factor (expr);
containing any number of variables
or functions, into factors irreducibe
over the integer.
Simplifies the expression expr and fullratsimp (expr);
all of its subexpressions, including
the arguments to non-rational
functions.
Product of sums and exponentiated expand (expr);
sums are multiplied out.

Examples

factor() fullratsimp() expand()

```
F(%i33) expr;
(%033) (x+3}-1\mp@subsup{)}{}{2
F(%i34) factor(expr);
(8034) (x-1)}\mp@subsup{)}{}{2}(\mp@subsup{x}{}{2}+x+1\mp@subsup{)}{}{2
F(%i35) fullratsimp(expr);
(%035) x x - 2 x
F(%i36) expr2:(g+h)^5;
(expr2) (h+g)5
F(%i37) expand(expr2);
(8037) h}\mp@subsup{h}{}{5}+5g\mp@subsup{h}{}{4}+10g\mp@subsup{g}{}{2}\mp@subsup{h}{}{3}+10g\mp@subsup{g}{}{3}\mp@subsup{h}{}{2}+5g\mp@subsup{g}{}{4}h+\mp@subsup{g}{}{5
```


System of equations Numerical method

Operators	Symbol
Solves the algebraic equation expr for the variable x and returns a list of solution equations in x. If expr is not an equation, the equation expr $=0$ is assumed in its place. x may be omitted if the expr contains only one variable.	```solve(expr, x); solve(expr);```
Solves a system of simultaneous (linear or non-linear) polynomial equations, and returns a list of solutions lists in the variables.	$\begin{aligned} & \text { solve([eqn_1, ..., eqn_n], } \\ & \left.\left[x_{-} 1, . . ., x_{-}\right]\right) ; \end{aligned}$
Solves a system of simultaneous LINEAR polynomial equations, and returns a list of solutions lists in the variables.	```linsolve([expr_1, .., expr_n], [x_1, ..., x_n];```

System of equations
 Numerical method: options

Operators
Each solved-for variable is bound to globalsolve = true;
its value in the solution of the
equations.

Example

linsolve() and globalsolve=true
$\begin{array}{ll}(\text { (si53) } & \text { eqn_1: } x+z=y ; \\ \text { (eqn_1) } & z+x=y\end{array}$
$\left[\begin{array}{ll}(8 i 54) & \text { eqn_2:2*t*} \mathrm{x}-\mathrm{y}=2^{\star} \mathrm{t}^{\wedge} 2 ; \\ (\text { eqn_2) } & 2 t \mathrm{x}-\mathrm{y}=2 \mathrm{t}^{2}\end{array}\right.$
$\left[\begin{array}{ll}(\text { (8i55) } & \text { eqn_3: } y^{-2 \star} z=2 ; \\ (\text { eqn_3) } & y^{-2} z=2\end{array}\right.$
$\left[\begin{array}{ll}\mathrm{(si56}) & \text { linsolve }([\text { eqn } 1, \text { eqn } 2, \text { eqn_3], }[x, y, z]) ; \\ & {[x=t+1, y=2 t, z=t-1]}\end{array}\right.$
$\begin{array}{ll}{[(8157)} & x ; \\ (8057) & x\end{array}$
$\begin{array}{ll}\mathrm{F}(\mathrm{si5} 5) & \text { linsolve }([\text { eqn_1, eqn_2, eqn_3], }[\mathrm{x}, \mathrm{y}, \mathrm{z}]), \text { globalsolve=true; } \\ {[\mathrm{so58})} & {[x: t+1, y: 2 t, z: t-1]}\end{array}$
$\begin{array}{ll}\text { (8i59) } & x ; \\ (8059) & t+1\end{array}$

Example

linsolve() vs solve()

```
[(%i60) kill(x,y);
[(%060) done
P(%i61) linsolve([x+3*y=2, 2*x-y=5],[x, y]);
(%061) [x=\frac{17}{7},y=-\frac{1}{7}]
P(%i62) kill(eqn, x, y);
    done
F(%i63) eqn:[4* x^2-y^2=12, x* y-x=2];
(eqn) [4 x
P(%i64) solve(eqn, [x,y]);
-(8064) [[x=2,y=2],[x=0.5202594388652008%i-0.1331240357358706,y=0.07678378523787788-
3.608003221870287%i], [x=-0.5202594388652008%i-0.1331240357358706,y=3.608003221870287%i+
0.07678378523787788],[x=-1.733751846381093, y=-0.1535675710019696]]
[(%i65) %[2];
```


Example

```
solve()
```


P(8i66) kill(a, x);

(8066) done

$$
\begin{aligned}
& \text { P(\%i67) solve(1+a*x+x^3, x); } \\
& \text { (8067) } \quad\left[x=\left(-\frac{\sqrt{3} \% \mathrm{i}}{2}-\frac{1}{2}\right)\left(\frac{\sqrt{4 a^{3}+27}}{23^{3 / 2}}-\frac{1}{2}\right)^{1 / 3}-\frac{\left(\frac{\sqrt{3} \% \mathrm{i}}{2}-\frac{1}{2}\right) a}{3\left(\frac{\sqrt{4 a^{3}+27}}{23^{3 / 2}}-\frac{1}{2}\right)^{1 / 3}}, x=\left(\frac{\sqrt{3} \% \mathrm{i}}{2}-\frac{1}{2}\right)\left(\frac{\sqrt{4 a^{3}+27}}{23^{3 / 2}}-\frac{1}{2}\right)^{1 / 3}-\frac{\left(-\frac{\sqrt{3} \% \mathrm{i}}{2}-\frac{1}{2}\right) a}{3\left(\frac{\sqrt{4 a^{3}+27}}{23^{3 / 2}}-\frac{1}{2}\right)^{1 / 3}, x=}\right. \\
& \left.\left(\frac{\sqrt{4 a^{3}+27}}{23^{3 / 2}}-\frac{1}{2}\right)^{1 / 3}-\frac{a}{3\left(\frac{\sqrt{4 a^{3}+27}}{23^{3 / 2}}-\frac{1}{2}\right)^{1 / 3}}\right] \\
& \text { P(8i68) \%[1]; } \\
& \text { (8068) } x=\left(-\frac{\sqrt{3} \% i}{2}-\frac{1}{2}\right)\left(\frac{\sqrt{4 a^{3}+27}}{23^{3 / 2}}-\frac{1}{2}\right)^{1 / 3}-\frac{\left(\frac{\sqrt{3} \% i}{2}-\frac{1}{2}\right) a}{3\left(\frac{\sqrt{4 a^{3}+27}}{23^{3 / 2}}-\frac{1}{2}\right)^{1 / 3}}
\end{aligned}
$$

Agenda

- Introduction to Maxima
- Maxima operators
- Input and output
- Starting function kill ()
- Terminator and special characters
- Assignment (:)
- Equation (=)
- Function (: =)
- Declarations assume() and define()
- Numerical evaluation numer and ev ()
- Arithmetic operation and trigonometric functions
- Differentiation and integrals diff() and integrate()
- Polynomials
- System of equations solve() and linsolve()
- Two-dimensional plot plot2d()
- References
- Castigliano's Theorem
- References

Plotting
 two-dimensions plot

```
Operators
    Symbol
Displays one or several plots in plot2d(plot, x_range, ...,
two dimensions. When options);
expressions or function name are
used to define the plots, they plot2d([plot_1, ..., plot_n], ...,
should all depend on only one options);
variable var and the use of
x_range will be mandatory, to
provide the name of the variable
and its minimum and maximum
values.
The syntax for the x_range is
[variable, min, max]
```


Example

plot2d()
$\left[\begin{array}{ll}(\% i 69) & \text { kill(all); } \\ \text { done }\end{array}\right.$
[(\%i1) plot2d ([sin(x)], [x, -\%pi, \%pi]);
[(8o1) [C:/Users/manto/maxout12624.gnuplot]
$\left[(\% i 2) \quad p l o t 2 d\left([\sin (x), \cos (x)],\left[x,-\frac{\%}{\circ}\right.\right.\right.$ i, \%pi])\$

Example

plot2d()
$\left[\begin{array}{ll}(\% i 69) & \text { kill(all); } \\ \text { done }\end{array}\right.$

[(\%i1) plot2d ([sin(x)], [x, - \%pi, \%pi]);
[(8ol) [C:/Users/manto/maxout12624.gnuplot]
$\left[(\% i 2) \quad\right.$ plot2d $\left([\sin (x), \cos (x)],\left[x,-\frac{\%}{\circ}, \frac{\circ p i}{}\right) \$\right.$
$\left[(\% i 3) \quad\right.$ plot $2 d\left(\% e^{\wedge}(3 * s),[s,-2,2], \operatorname{logy}\right) \$$

Agenda

- Introduction to Maxima
- Maxima operators
- References
- Castigliano's Theorem
- References

References

ENGLISH DOCUMENTATION

- http://maxima.sourceforge.net/docs/manual/maxima.html
- http://maxima.sourceforge.net/docs/tutorial/en/minimalmaxima.pdf (miniguide)
- http://superk.physics.sunysb.edu/~mcgrew/phy310/documenta tion/maxima-reference.pdf (extensive guide)

ITALIAN DOCUMENTATION http://maxima.sourceforge.net/docs/tutorial/it/maxima 1.0consonni.pdf (miniguide)

LAB Maxima file saved as
intro_maxima_operators.wxmx

Agenda

- Introduction to Maxima
- Maxima operators
- References
- Castigliano's Theorem
- Theorem of least work
- CASE A: Statically determined structure
- CASE B: Statically determined structure
- CASE C: Statically redundant structure (+1 dof)
- CASE D: rollbar- statically redundant structure (+3 dof)
- References

Castigliano's Theorem
 Theorem of least work

"The first partial derivative of the total internal energy (U) in a structure with respect to the (force P) (couple C) applied at any point is equal to the (deflection δ) (angular rotation φ) at the point of application of that (force) in the direction of its line of action (or couple)".

$$
\begin{aligned}
\delta & =\frac{\partial U}{\partial P} \\
\varphi & =\frac{\partial U}{\partial C}
\end{aligned}
$$

The theorem is applicable to linearly elastic (Hookean material) structures with constant temperature and unyielding supports.
Note that in the above statements:

- force (P) may mean point force or couple (C);
- displacement may mean translation (δ) or angular rotation (φ).

Castigliano's Theorem Theorem of least work

The Castigliano's theorem:
1- applied to a statically determined structure, allows the deflection and the angular rotation of the structure to be computed;

2- applied to a statically redundant structure, allows the reaction forces to be determined. Therefore, the structure becomes a statically determined structure consequently the deflection and the angular rotation of the redundant structure are also computed.

Castigliano's Theorem
 Theorem of least work

Considering only plane problems, the internal energy (U) of the structure is:

$$
U=\int_{l}\left(\frac{M_{f}^{2}}{2 E J}+\frac{N^{2}}{2 A E}+\xi \frac{T^{2}}{2 A G}\right) d x
$$

where:
I is the length of the structure;
M_{f}, N, T are the bending moment, normal force and the shear force; A and J are the cross-section area and moment of inertia; E and G are the Young's modulus and shear modulus of the material; ξ Is the shear coefficient associated to the evaluation the internal energy done by the shear force, where ξ is 1.2 or 1.11 for rectangular or circular cross-section beam.

Castigliano's Theorem
 CASE A: Statically determined structure

Considering a cantilever beam in steel loaded by a concentrated force P at the extremity called point A and fixed to the further extremity, evaluate the deflection of the beam at the point $\mathrm{A}\left(\delta_{\mathrm{A}}\right)$.

Hp) Rectangular cross section
b: 10 mm , h:20 mm;
I: 100 mm
P: 10000 N

$$
\begin{aligned}
& M_{f}(x)=P x \quad ; \quad T=P \\
& U=\int_{0}^{l} \frac{M_{f}^{2}}{2 E J} d x+\int_{0}^{l} \xi \frac{T^{2}}{2 A G} d x=\int_{0}^{l} \frac{P^{2} x^{2}}{2 E J} d x+\int_{0}^{l} \xi \frac{P^{2}}{2 A G} d x=\frac{P^{2} l^{3}}{2 \times 3 E J}+\xi \frac{P^{2} l}{2 A G} \\
& \delta_{\mathrm{A}}=\frac{\partial U}{\partial P}=\frac{P l^{3}}{3 E J}+\xi \frac{P l}{A G}
\end{aligned}
$$

Castigliano's Theorem CASE A: Statically determined structure

Rectangular cross section
b: 10 mm , h:20 mm;
l: 100 mm
P: 10000 N
$\xi: 1.2$
J: b*h³/12: 6666,66 mm ${ }^{4}$
A: b*h: $200 \mathrm{~mm}^{2}$
E: 210000 MPa
v: 0,3
$\mathrm{G}: \mathrm{E} /[2(1+\mathrm{v})]: 80000 \mathrm{MPa}(\mathrm{ca})$

$$
\begin{aligned}
& \delta_{\mathrm{A}}=\frac{\partial U}{\partial P}=\frac{P l^{3}}{3 E J}+\xi \frac{P l}{A G} \\
& \delta_{\mathrm{A}}=2,3810+0.075=2,456 \mathrm{~mm}
\end{aligned}
$$

The shear contributes to the deflection of the beam the 3.05 per cent, due to this limited contribution the shear is commonly omitted from the preliminary dimensioning of a structure.

Castigliano's Theorem CASE B: Statically determined structure

Considering a cantilever beam loaded by a concentrated force P at the midspan of the beam (point B) and fixed to one extremity, evaluate the deflection of the beam at the free extremity of the beam at the point $\mathrm{A}\left(\delta_{\mathrm{A}}\right)$.

NOTE: The point A is an unloaded section of the beam.
"The first partial derivative of the total internal energy (U) in a structure with respect to the force P applied at any point is equal to the deflection δ at the point of application of that force in the direction of its line of action".

Hp) the shear contribution has been neglected from the internal energy equation.

Castigliano's Theorem

CASE B: Statically determined structure

A fictitious concentrated force F is applied to the beam, at the point A; at which the deflection of the beam must be evaluate.
At the end of the calculus that force F will be considered as null.

Part (1)

$$
\begin{aligned}
& M_{f, 1}(x)=F x \\
& U_{1}=\int_{0}^{1 / 2} \frac{M_{f, 2}^{2}}{2 E J} d x=\int_{0}^{1 / 2} \frac{(F x)^{2}}{2 E J} d x=\frac{F^{2}}{2 E J} \int_{0}^{1 / 2} x^{2} d x=\left.\frac{F^{2}}{2 E J} \frac{x^{3}}{3}\right|_{0} ^{1 / 2}=\frac{F^{2}}{2 E J} \frac{l^{3}}{3 \times 8}=\frac{F^{2} l^{3}}{48 E J}
\end{aligned}
$$

Castigliano's Theorem

CASE B: Statically determined structure

Part (2)

$$
\begin{aligned}
& M_{f, 2}(x)=P y+F\left(y+\frac{l}{2}\right) \\
& U_{2}=\int_{0}^{l / 2} \frac{M_{f, 2}^{2}}{2 E J} d y=\int_{0}^{l / 2} \frac{\left(P y+F\left(y+\frac{l}{2}\right)\right)^{2}}{2 E J} d y= \\
& \frac{1}{2 E J} \int_{0}^{l / 2}\left(P^{2} y^{2}+F^{2} y^{2}+F^{2} \frac{l^{2}}{4}+2 F^{2} y \frac{l}{2}+2 P F y^{2}+2 P F y \frac{l}{2}\right) d y= \\
& \frac{1}{2 E J}\left(P^{2} \frac{l^{3}}{3 \times 8}+F^{2} \frac{l^{3}}{3 \times 8}+F^{2} \frac{l^{2}}{4} \frac{l}{2}+2 F^{2} \frac{l}{2} \frac{l^{2}}{2 \times 4}+2 P F \frac{l^{3}}{3 \times 8}+2 P F \frac{l}{2} \frac{l^{2}}{2 \times 4}\right)= \\
& \frac{1}{2 E J}\left(P^{2} \frac{l^{3}}{24}+F^{2} \frac{l^{3}}{24}+F^{2} \frac{l^{3}}{8}+F^{2} \frac{l^{3}}{8}+P F \frac{l^{3}}{12}+P F \frac{l^{3}}{8}\right)= \\
& \frac{1}{48 E J}\left(P^{2} l^{3}+7 F^{2} l^{3}+5 P F l^{3}\right)
\end{aligned}
$$

Castigliano's Theorem

CASE B: Statically determined structure

Part (2)

$$
M_{f, 2}(x)=P y+F\left(y+\frac{l}{2}\right)
$$

$$
U_{2}=\int_{0}^{l / 2} \frac{M_{f, 2}^{2}}{2 E J} d y=\int_{0}^{l / 2} \frac{\left(P y+F\left(y+\frac{l}{2}\right)\right)^{2}}{2 E J} d y=
$$

$$
\frac{1}{2 E J} \int_{0}^{l / 2}\left(P^{2} y^{2}+F^{2} y^{2}+F^{2} \frac{l^{2}}{4}+2 F^{2} y \frac{l}{2}+2 P F y^{2}+2 P F y \frac{l}{2}\right) d y=
$$

$$
\frac{1}{2 E J}\left(P^{2} \frac{l^{3}}{3 \times 8}+F^{2} \frac{l^{3}}{3 \times 8}+F^{2} \frac{l^{2}}{4} \frac{l}{2}+2 F^{2} \frac{l}{2} \frac{l^{2}}{2 \times 4}+2 P F \frac{l^{3}}{3 \times 8}+2 P F \frac{l}{2} \frac{l^{2}}{2 \times 4}\right)=
$$

$$
\frac{1}{2 E J}\left(P^{2} \frac{l^{3}}{24}+F^{2} \frac{l^{3}}{24}+F^{2} \frac{l^{3}}{8}+F^{2} \frac{l^{3}}{8}+P F \frac{l^{3}}{12}+P F \frac{l^{3}}{8}\right)=
$$

$$
\frac{1}{48 E J}\left(P^{2} l^{3}+7 F^{2} l^{3}+5 P F l^{3}\right)
$$

Castigliano's Theorem

CASE B: Statically determined structure

Total internal energy of the structure (U)

$$
\begin{aligned}
U=U_{1}+U_{2} & =\frac{F^{2} l^{3}}{48 E J}+\frac{1}{48 E J}\left(P^{2} l^{3}+7 F^{2} l^{3}+5 P F l^{3}\right) \\
& =\frac{1}{48 E J}\left(P^{2} l^{3}+8 F^{2} l^{3}+5 P F l^{3}\right)
\end{aligned}
$$

The fictitious concentrated force F is assume null, at the conclusion of the calculus. LAST EVALUATION!!!

$$
\begin{aligned}
\delta_{\mathrm{A}}=\left.\frac{\partial U}{\partial F}\right|_{F=0} & =\left.\frac{1}{48 E J}\left(16 F l^{3}+5 P l^{3}\right)\right|_{F=0} \\
& =\frac{1}{48 E J} 5 P l^{3}=\frac{5 P l^{3}}{48 E J}
\end{aligned}
$$

Agenda

- Introduction to Maxima
- Maxima operators
- References
- Castigliano's Theorem
- Theorem of least work
- CASE A: Statically determined structure
- CASE B: Statically determined structure
- CASE C: Statically redundant structure (+1 dof)
- CASE D: Rollbar- statically redundant structure (+3 dof)
- References

Castigliano's Theorem
 CASE C: Statically redundant structure (+1dof)

Considering a beam:

- loaded by a concentrated force P at the midspan of the beam (point B);
- fixed to right-hand side extremity;
- simply-supported to the left-hand side extremity at the point A
Evaluate the reaction force (F) acting at the
 support at point A of the structure.
The equilibrium equations are not sufficient to calculate the reaction forces acting on the beam.
Therefore, a compatibility equation related to the deformation of the structure must be imposed.

In this case, the A-point of the beam does NOT be able to move vertically.

Castigliano's Theorem

CASE C: Statically redundant structure (+1dof)

Part (1)

$$
\begin{aligned}
& M_{f, 1}(x)=F x \\
& U_{1}=\int_{0}^{1 / 2} \frac{M_{f, 1}^{2}}{2 E J} d x=\int_{0}^{1 / 2} \frac{F^{2} x^{2}}{2 E J} d x=\frac{F^{2}}{2 E J} \frac{l^{3}}{3 \times 8}
\end{aligned}
$$

Part (2)

$$
\begin{aligned}
& M_{f, 2}(y)=F\left(y+\frac{l}{2}\right)-P y \\
& U_{2}=\int_{0}^{l / 2} \frac{M_{f, 2}^{2}}{2 E J} d x= \\
& \frac{1}{2 E J}\left[F^{2}\left(\frac{l^{3}}{3 \times 8}+\frac{l^{2}}{4} \frac{l}{2}+2 \frac{l}{2} \frac{l^{2}}{2 \times 4}\right)+P^{2} \frac{l^{3}}{3 \times 8}-2 P F\left(\frac{l^{3}}{3 \times 8}+\frac{l}{2} \frac{l^{2}}{2 \times 4}\right)\right]
\end{aligned}
$$

Castigliano's Theorem
 CASE C: Statically redundant structure (+1dof)

Total internal energy of the structure (U)

$$
U=U_{1}+U_{2}=\frac{F^{2}}{2 E J} \frac{l^{3}}{3 \times 8}+\frac{1}{2 E J}\left[F^{2}\left(\frac{l^{3}}{3 \times 8}+\frac{l^{2}}{4} \frac{l}{2}+2 \frac{l}{2} \frac{l^{2}}{2 \times 4}\right)+P^{2} \frac{l^{3}}{3 \times 8}-2 P F\left(\frac{l^{3}}{3 \times 8}+\frac{l}{2} \frac{l^{2}}{2 \times 4}\right)\right]
$$

Evaluate the deflection of the beam at the point $A\left(\delta_{A}\right)$ by the first partial derivative of the total internal energy (U) proper of the structure with respect to the force F.
Imposing that the deflection $\left(\delta_{A}\right)$ is forbidden due to the presence of the support acting at the point A, the unknown of the problem is the vertical reaction force (equal to F) that the support induced into the structure.

$$
\begin{aligned}
& \delta_{\mathrm{A}}=\frac{\partial U}{\partial F}=\frac{2 F}{2 E J} \frac{l^{3}}{3 \times 8}+\frac{1}{2 E J}\left[2 F\left(\frac{l^{3}}{3 \times 8}+\frac{l^{2}}{4} \frac{l}{2}+2 \frac{l}{2} \frac{l^{2}}{2 \times 4}\right)-2 P\left(\frac{l^{3}}{3 \times 8}+\frac{l}{2} \frac{l^{2}}{2 \times 4}\right)\right]= \\
& \frac{1}{2 E J}\left[\frac{2 F l^{3}}{3}-\frac{5 P l^{3}}{24}\right]=0 \Rightarrow F=\frac{5 P}{16}
\end{aligned}
$$

Castigliano's Theorem

CASE D: Roll bar - Statically redundant structure (+3 dof)

Castigliano's Theorem

CASE D: Roll bar - Statically redundant structure (+3 dof)

Considering a simplified roll bar:

- fixed to the extremities;
- loaded by a lateral concentrated force (P) acting at the point B of the structure.
Evaluate the deflection (δ_{B}) acting at the point B of the structure, located at the maximum point at which the driver and the passenger can reach during a rollover crash event.

Castigliano's Theorem

CASE D: Roll bar - Statically redundant structure (+3 dof)

Castigliano's Theorem
 CASE D: Roll bar - Statically redundant structure (+3 dof)

1. Application of a fictitious force F at point B;

2. Evaluation of the equilibrium of the structure, to retrieve the reaction forces and moment acting at E ;
3. Definition of a linear shape functions in the [0,1] interval;
4. Definition of the bending moment acting on the portions of the structure, called as Mf_AB, Mf_BC, Mf_CD, Mf_DE;
5. Definition of the elastic internal energy related to the various beam segments U_AB, U_BC, U_CD, U_DE;
6. Evaluation of the total elatic internal energy of the structure defined as the sum of the various beam segments.

Castigliano's Theorem

CASE D: Roll bar - Statically redundant structure (+3 dof)

7. Application of the Castigliano's theorem for obtaining the displacements and the rotation at A named as uA, vA, rA.
8. Definition of kinematic congruence with respect to the clamp constraint in A is to be enforced, by the mean of a system of (linear) equations.
9. Evaluation of the redundant reaction force and moment acting at point A (XA, YA, CA) starting from the system of equation imposed by the kinematic congruence equations (see point 8).

Castigliano's Theorem

CASE D: Roll bar - Statically redundant structure (+3 dof)

10. Evaluation of the overall internal energy of the structure U, substituting the definition of $X A, Y A, C A$. The U relation is function of the external load P and of the fictitious force F acting at B.
11. The displacement at the B point is evaluated through the Castigliano's theorem;
12. The fictitious nature of F may now be enforced to be null.
Q.E.D.

Agenda

- Introduction to Maxima
- Maxima operators
- References
- Castigliano’s Theorem
- References

References

ENGLISH DOCUMENTATION

Shigley, J. E. (2011). Shigley's mechanical engineering design. Tata McGraw-Hill Education. Section 4.8 pp. 164-169.
https://eclass.teicrete.gr/modules/document/file.php/TM114/shigley-machine-design.pdf

ITALIAN DOCUMENTATION
Strozzi, A. (1998). Costruzione di Macchine, Pitagora Ed., Bologna.
Strozzi, A. (2016). Fondamenti di Costruzione di Macchine, Pitagora Ed., Bologna.

LAB Maxima file saved as
rollbar_def.wxmx
"Machines can never think as humans do but just because something thinks differently from you, does it mean it's not thinking?"
A. Turing

