
i
i

“master” — 2020/4/8 — 14:55 — page 1 — #1 i
i

i
i

i
i

F2

1

G

rigid elements

x

yz
O

cb

a

L

B
A

LII ≡ P

LIII ≡ Q

LIV ≡ R

D

cross-sectional plane

s

e

f
C

3

(a)

(b)

F

dw

F

F

F

Figure 1: A simplified ladder-frame chassis, consisting in two longitu-
dinal channel-section beams spanning along the wheelbase; their con-
nection to the axles are assumed as rigid for simplicity, and the three
supports are such to exert a purely vertical reaction force.

0.1 A semi-worked example: a simplified lad-
der frame chassis

The present contribution concerns the torsional stiffness1 evaluation
for the simplified ladder-frame chassis depicted in Fig. 1, whose track
width is 2c for both the axles, and whose wheelbase is 2a; the length
of the two rail profiles is nominally assumed equal to the wheelbase.

Torsional stiffness is an established chassis structure conventional
property, which is significant for the suspension tuning practicability
with respect to under-/oversteering control; still, it is simplistic to

1a.k.a. torsional rigidity
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assume that a high enough torsional stiffness may prevent handling
issues in general, since, e.g. it is pretty uncoupled with the structure
response to dynamic lateral forces. Nevertheless, the measurement
procedure is straightforward, and the test rig is cheap.

Fig. 1a represents a formally correct test setting for the torsional
stiffness; the chassis is simply supported at three of the wheel centers,
whereas a vertical force F is applied at the fourth one, at which the
dw vertical deflection is also measured.

The vertical supports allow for three residual rigid body motions
along the (O,xy) horizontal plane; a statically determinate set of fur-
ther constraint is required for uniquely positioning the structure in
space.

It is of the most importance to grant the statically determinate
nature of the overall constraining system, since any further restraint
might unduly support the loaded structure, and thus spuriously raising
its observed stiffness.

A straightforward analysis of the chassis structure global equilib-
rium2 returns that each axle is loaded by a pair of equal and opposite
vertical forces - i.e. by a pure, longitudinally oriented moment vector,
and that those two front and rear moments are self compensating. In
the case of equal track widths, four vertical forces of equal magnitude
F are applied at the four wheel centers, whose orientation switches
along the axles, and from the axle to axle; in the case of different track
widths, forces of equal magnitude are applied at each wheel of the axle,
and they scale from the front to the rear with the inverse of the track
width.

Once obtained the experimental ratio between the F force and the
dw deflection, the torsional stiffness k may be derived as the ratio
between the magnitude of the torque applied to each axle, and the
relative twist angle, namely

k =
2cF
dw
2c

=
F (2c)2

dw
, (1)

2with reference to Fig. 1b, i) rotational equilibrium with respect to the rear PQ
axle requires a downward F force at R, ii) rotational equilibrium with respect to the
front LR axle requires that the two rear supports exert equal and opposite vertical
reactions, whose magnitude is set by iii) the rotational equilibrium with respect to
the longitudinal chassis axis.
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Figure 2: A quarter portion of the ladder frame, which is the minimal
portion to be modeled due to the dual skew-symmetry. Please note
that the (O,xyz) reference system of the present figure coincides with
its fixed counterpart as in Fig. 1 in the undeformed configuration only.
The present figure reference frame partly follows, in fact, the structure
deflection.

where the 2c track width pertains to the axle that includes the loaded
(and monitored in deflection) wheel center.

In the case under scrutiny of equal track widths, the twice-symmetric
structure is loaded by a system of four forces which are skew-symmetrically
arranged with respect to both the (O,zx) and the (O,yz) planes3.

A twice skew-symmetric problem is thus obtained, whose represen-
tative portion - a quarter of the whole structure - is represented Figure
2a.

3a third skew-symmetry plane, namely the (O,xz) exists if the profiles are con-
sistently symmetric; however, limited benefit is attained in considering such a third
skew-symmetry plane in the treatise.

3



i
i

“master” — 2020/4/8 — 14:55 — page 4 — #4 i
i

i
i

i
i

Skew-symmetry constraints are required at the intersection of the
front axle rigid member with the (O,zx) plane - a point, this, which
is nominally embodied by the A location4, and at the intersection of
the longitudinal rails with the (O,yz) plane, nominally taken at the D
centroid of the interested cross section. Those constraints are set in
order to grant material - or rigid body motion law - continuity between
the modeled, representative portion of the structure, and its images,
and they lead to the reaction forces and moments listed in Fig. 2b.

It worth to mention that the problem depicted in Fig. 1 is not
twice skew-symmetric in itself, due to the unsimmetric nature of the
support arrangement; however, the problem acquires such a property
once the exerted reaction forces are considered, in place of the origi-
nating constraints.

In such cases, the problem solutions obtained i) for the complete
structure, subject to the original constraints, and ii) for the represen-
tative portion, and duly mirrored, are consistent in terms of strains,
stresses and with regard to their resultants, whereas they differ by
a rigid body motion in terms of absolute displacement and rotations.
Such a behavior can be rationalised by considering that a moving frame
exists, according to which a [skew-]symmetric structure behavior is ob-
served; this moving reference system is ideally pinned to the structure
at the same d.o.f.s that are affected by the [skew-]symmetry constraints.

Most of the skew-symm. constraint reaction forces may be set based
on the equilibrium equations for the quarter ladder-frame structure, see
Fig. 2b; UA and VD are set null based on the translational equilibrium
with respect to the global x and y axes, respectively. By casting a
system of equations which involves the translational equilibrium with
respect to z, and the rotational equilibrium with respect to the (O,x)
and the (O,y) axes - see Figs 2c and 2d, other three unknown reac-
tions amongst WA, ΦA, WD and ΘD may be defined; the remaining
independent equilibrium equation - a rotational one, and associated to
the (O,z) axis - is trivially satisfied in the absence of any contribution,
thus making the overall system of equations rank deficient of degree
one.

The [quarter] ladder-frame structure, loaded according to the tor-
sional stiffness test, appears hence once internally statically indetermi-

4any point of the (O,zx) plane may equally serve the purpose
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nate5; we then define a principal structure by fictively releasing the z
oriented constraint at A, and thus allowing for a z-oriented slippage at
the interface between the ABL rigid member and its image. As usual,
the associated WA reaction force is treated as a parameter, whose value
is tuned to reinstate continuity at A; the remaining constraint reactions
are then obtained as a linear combination of the F and WA load pa-
rameters.

The second Castigliano theorem is employed to evaluate the wA

vertical deflection at A, which in turn requires the expression for the
internal strain energy to be cast as a function of the same aforemen-
tioned load parameters.

Since the contribution of a rigid member to the structure strain
energy is zero by definition, we proceed to the evaluation of the inter-
nal action components for the channel section rail; by considering the
equilibrium of a DG rail segment, where G is a centroidal point taken
at a s distance from D - see Fig. 2a, we obtain

N = 0 Q1 = −VD = 0 Q2 = −WD = WA − F

and

M1 = −sWD = −s (WA − F )

M2 = +sVD = 0

Mt = −ΘD + eWD − fVD = (F −WA) (e+ b)− Fc.

The torsional momentMt does not coincide with−ΘD since the VD,WD

shear aligned forces are assumed as applied at the D - which is a cen-
troid, and they result shifted with respect to the cross-sectional shear
center.

The following expression for the strain energy lineic density is em-
ployed – cfr. Eq.?? – which preserves the contribution of all the internal
action components

dU

dl
=

N2

2EAαaxl
+
J22M

2
1 + J11M

2
2 + 2J12M1M2

2E
(
J11J22 − J2

12

)
αflx

+
M2

t

2GKtαtrs
+
χ1Q

2
1 + χ2Q

2
2 + χ12Q1Q2

2GAαshr
.

5Please note that, apart from the peculiar [skew-]symmetric condition, a spatial
closed ring is in general six times statically indeterminate.
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Also, the cross section elastic characteristic with respect to each in-
ternal action component is scaled by a normally unit auxiliary factor
α�, which may steer the elastic response towards infinite compliance
(α� → 0) or infinite stiffness (α� →∞); those stiffness multipliers will
be employed in the discussion of the results below, and may be ignored
otherwise.

We may now integrate such a lineic strain energy density over the
interval s ∈ [0, a], thus obtaining the U internal strain energy for the
quarter frame as a quadratic function of F and WA.

The vertical deflection at A may then be derived according to the
Castigliano theorem, and may be set to zero in order to obtain the
expression of WA as a linear function of F .

As in the previous worked example, such WA(F ) is substituted
within the U (F,WA) quarter frame internal energy expression, which
becomes a function of the sole external load F .

A further applications of the Castigliano theorem let us derive the d
deflection of the F force application point for the quarter ladder-frame
structure, i.e. with respect to the aforementioned moving reference sys-
tem, according to which the displacement field is twice skew-symmetric.

The absolute dw deflection of the L wheel center, i.e. the deflec-
tion observed according to a reference system consistent with the three
supports of Fig. 1, may be derived based on the observation that the
internal energy for the whole chassis is four times the one evaluated for
the quarter structure; we thus obtain

dw =
d(4U)

dF
= 4d. (2)

Such a result may be rationalized considering the (−d,+d,−d,+d) ver-
tical deflections of the (L,P,Q,R) points, respectively, derived from the
mirrored quarter structure response. A downward, uniform, translation
of magnitude d reestablishes the congruence with the fixed supports at
points P,R, with overall deflections (−2d, 0,−2d, 0). Finally, a suitable
rotation with respect to the PR diagonal raises of a 2d quantity the
vertical position of the Q point, thus reinstating compliance with the
third support. Since the L and the Q points are located at an equal
distance from the pivot line, the same rotation lowers the L point of an
equal 2d quantity, thus leading to the absolute deflection configuration
(−4d, 0, 0, 0).
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Figure 3: Dimensions for the channel section employed in calculations.
The web height h is the relevant dimensional parameter, whereas υ
is the ratio between the flange width and the web height, and ε sets
the ratio between the wall thickness – assumed uniform – and the web
height. Centroidal coordinates (m,n) are measured with respect to the
web midspan, whereas the shear center coordinates (e, f) are measured
with respect to the centroid. Please note that the cross-section prop-
erties reported in the maxima worksheet are evaluated according to a
small thickness hypothesis, i.e. their expressions is consistent with a
vanishing ε, first order Taylor expansion.

The ladder-frame chassis torsional stiffness may be then evaluated
according to Eqn. 1, which leads to a pretty composite expression
whose rationalization is complicated.

In order to isolate the influence of the various parameters, a ref-
erence configuration is defined in terms of channel section and global
chassis dimensions. In particular, the worked example provided in form
of a maxima worksheet employs the channel section of Fig.3 for both
the rails. Also, all the α� auxiliary stiffness multipliers are bonded to
unity in the reference case.

The response of the structure to the variation of one or more pa-
rameters is assessed based on the torsional stiffness ratio between the
altered configuration, and the reference one.

Leaving to the willing reader the influence analysis of the various
parameters6, we focus on how the three main sources of compliance –

6Consider in particular the influence of the rail span length a, of their mutual
distance b, and the influence of the cross section size h and thickness t. Since the
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namely, the rail compliance to the torsional moment, to the bending
moment, and to shear actions – interact in defining the overall compli-
ance of the simple structure under scrutiny.

The ratio is hence considered between the chassis torsional stiffness
for the reference configuration, namely kref , and its k (αtrs, αflx, αshr)
counterpart obtained with given αtrs, αflx and αshr profile torsional,
bending a shear stiffness multipliers, respectively.

If we speculate the profile flexural7 and shear stiffness to vanish,
i.e. the longitudinal rail torsional stiffness is fictitiously left alone in
elastically connecting the two rigid elements, we may consider the limit

lim
αflx,αshr→0

k (1, αflx, αshr)

kref
= p > 0 (3)

which returns a nonzero fraction of the unity, whose value is pretty
small for the open thin-walled section under scrutiny, but that might
become relevant for bulky closed section profiles. Each profile is in fact
twisted by the same amount of relative rotation that occurs between
the two front and rear rigid members, thus accumulating internal strain
energy, and thus requiring a finite work-supplying external force.

We now consider the complementary condition, in which the two
rails lose their capability to elastically react to torsion, whilst retaining
their full shear and flexural stiffness; we hence consider the limit

lim
αtrs→0

k (αtrs, 1, 1)

kref
= 1− p > 0 (4)

which also returns a nonzero fraction of the unity, complementary to
the former one, as expected. Such a fraction of the overall stiffness
may be observed to vanish e.g. with vanishing spacing between the
two rails; it is in fact associated to the vertical misalignment of the
longitudinal beam ends, which equates the product of the relative rigid
member rotation by an arm that is equal to half the rail spacing. Such

material is homogeneous and isotropic, the stiffness varies linearly with the Young
modulus, you don’t really have to check. For a cleaner analysis, try also to isolate
the various sources of compliance, i.e. compliance with respect to bending moments,
torsional moment, and shear actions alone.

7Here, we follow for added clarity the academic distinction between bending,
which – in consistency with to the general nonuniform bending meaning – may
be employed as an umbrella term for both flexure and shear, and flexure, which
excludes shear contributions.

8
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a vertical misalignment may not be achieved through a profile rigid
motion, and hence a further contribution is due to the overall strain
energy.

The complementary nature of the two above quantities hints for a
in parallel disposition of the two means the profile may react to the
relative rotation of the rigid members they are clamped to.

The latter contribution may be further scrutinized by splitting the
two distinct shear and flexural contributions; we consider in particular
the two limits

lim
αshr→0

lim
αtrs→0

k (αtrs, 1, αshr)

kref
= 0 lim

αflx→0
lim

αtrs→0

k (αtrs, αflx, 1)

kref
= 0 (5)

which both vanish, thus indicating that none of the two isolated elastic
reactions may be activated alone. By turning into rigid the profile with
respect to either shear or flexure, i.e.

lim
αshr→∞

lim
αtrs→0

k (αtrs, 1, αshr)

kref
= q > 1− p > 0 (6)

lim
αflx→∞

lim
αtrs→0

k (αtrs, αflx, 1)

kref
= r > 1− p > 0, (7)

we obtain finite normalized flexural and shear compliances, 1/q and
1/r respectively, whose sum equates the cumulative compliance 1/(1−
p) attributable to the overall bending. An in-series arrangement of
the two flexural and shear compliances is thus suggested, which finds
rationalization in the fact that the same end transverse shift may be
accomodated both through i) an S-shaped, purely flexural deflection,
ii) through a card-deck pure shear inclination, or iii) a combination of
the two.

The compliance components’ arrangement for the simplified ladder-
frame chassis under scrutiny is shown in Figure 4; in a general structure,
the mutual interaction of the elastic members may not be pigeonholed
within the simplistic “many in parallel” or “many in-series” models; a
complex combination of those two elementary modes may be considered
even for the simple, single d.o.f. case treated in the present paragraph.

It is finally noted that, in the case of struts manufactured from
composite laminates, the speculative selective deactivation of one or
the other mean of elastic response earns actual significance, since the
simple lack of dedicated laminae may suffice in obtaining such a tricky

9
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\\| trs.compliance +----+

\\|-----/\/\/\/\/\/\/\/\-----| | F*2*c

\\| | |=======> action

\\| | |

\\| | | dw/2/c

\\| flx.comp. shr.comp. | |-------| deflection

\\|---/\/\/\/\----/\/\/\/\---| |

\\| +----+

\_____ bnd.comp. ____/ __A__A__

////////

Figure 4: An ASCII art rationalization of the compliance components’
arrangement for the simplified ladder frame chassis under scrutiny; the
torsional elastic compliance of the profiles acts in parallel with their
combined in-series flexural and shear compliance.

behavior; as an example, the lack of axially oriented fibers in a CFRP
laminated profile may lead to a behaviour which is very similar to the
αflx → 0 case.
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