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Abstract
The contact pressure is considered for an elastomeric rectangular seal with rounded edges. An asymptotic matching is
performed between an available analytical expression of the contact pressure that neglects the finiteness of the seal
dimensions and a fracture mechanics solution describing a periodically laterally cracked strip of finite width. This match-
ing provides a corrected formula for the peak contact pressure that accounts for the finiteness of the seal dimensions.
The analytical expression for the peak contact pressure is validated versus finite element predictions for a large family of
seal geometries and, in particular, for a seal reference shape extracted from the pertinent literature. An appraisal of the
finite deformation effect has been carried out numerically.
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Introduction

Rectangular elastomeric seals (e.g. Nikas et al.1) consti-
tute an alternative design to O-rings (e.g. George
et al.2). Figure 1 displays a rectangular seal with
rounded edges, and it clarifies the meaning of the main
symbols adopted, namely, the seal width, w, its height,
h, the rounded edge radius, r, and the extent, a, of the
material laterally protruding beyond the flat portion of
the sealing profile.

Rectangular seals are employed in demanding appli-
cations such as aircraft actuators (e.g. Ruskell3). They
are also commonly used as gaskets in gear pumps; their
shape follows the geometry of the flange/cover border,
and, therefore, they are moulded on purpose.

The edges of rectangular seals for reciprocating
motion may be manufactured as square (see Ruskell3).
In this case, wear produces chamfers at the extremities
of the contact profile, whose shape and size are some-
what indeterminate. Alternatively, the seal edges are
manufactured as rounded (see Strozzi4).

As a consequence of the presence of rounded edges,
the contact pressure exhibits Hertzian-type local bumps
in its lateral zones; it remains almost flat in the central
zone of the contact; and it becomes null at the contact
extremities. The lateral bumps and the central flattish

zone confer to the contact pressure distribution a
camel-backed profile (see Strozzi4 and Strozzi et al.5

for a similar axisymmetric problem).
An analysis of the properties of specific seal profiles

is more relevant when the profile is not appreciably
altered by wear, hence in static applications and in low-
cycle dynamic employments. The stress field within an
elastomeric seal and, in particular, its contact pressure
distribution are useful indicators of the seal perfor-
mance both in static and in elasto-hydrodynamic lubri-
cation regimes; the evaluation of the peak contact
pressure constitutes the primary scope of this article.

In Strozzi,4 an approximate model is proposed to
compute the contact pressure profile, based upon a fic-
titious segmentation of the rectangular seal into simple
substructures. It is however difficult to derive a more
rigorous analytical expression of the contact pressure
curve for the title problem. In fact, the analytical
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solution available for a rectangular punch with
rounded edges, pressed against a half plane (e.g.
Ciavarella et al.6 and related bibliography), is exact
only in the situation of a rigid punch indenting a
deformable half plane (see Strozzi et al.7), whereas in
the title problem the punch (i.e. the seal) is flexible and
the half plane (i.e. the counterface) is rigid. In fact, the
analytical solution of Ciavarella et al.6 relies on the
Boussinesq foundation model, which, holding for an
infinite half plane, cannot account for the effect of the
seal finite width and height.

It has recently been shown in Strozzi et al.,7

Sackfield et al.,8 and Banerjee et al.9 that the unrealities
of the above analytical solution may be corrected, and
the finiteness of the indenter dimensions may be
accounted for, by combining the above analytical solu-
tion with fracture mechanics (FM) results dealing with
the stress singularities at the tip of a transverse crack in
a strip of finite width. This combination relies on a
matching between two asymptotic solutions, namely,
(a) the analytical pressure profile valid for a friction-
less, plane, rounded rigid indenter of semi-infinite
width and (b) the corresponding pressure profile
describing the sharp-edged equivalent of the problem
under scrutiny. The sharp-edged equivalent problem is
modelled in terms of FM, where the crack length coin-
cides with the width of the indenter material projecting
beyond the contact extremities; for the commonplace
situation of indenter rounded edges described by a
quarter circumference and for moderate compressions,
the projection width may be assumed to coincide with
the edge radius (see Figure 1).

Equation (18) for the peak contact pressure obtained
in Strozzi et al.7 has been developed for a deformable
rectangular punch with rounded edges and of infinite
width and height; in addition, it is assumed that the
seal rounded edges are described by a quarter circum-
ference and the preliminary assessments of this for-
mula, presented in Strozzi et al.,7 have indicated that
this approach is accurate in modelling a deformable
punch compressed against a rigid half plane. However,

in the seal realm, the rounded portion may be less than
a quarter of circumference (see Figure 1 of Strozzi4 and
Prati and Strozzi10).

This article aims at developing an extension of for-
mula (18) of Strozzi et al.7 that accounts for the com-
bined effects of (a) finite seal width and height and (b) a
rounded corner described by an incomplete quarter cir-
cumference. This improved formula has been achieved
by asymptotically matching (a) the Boussinesq solution
of Sackfield et al.,8 for a frictionless rigid indenter of
semi-infinite width whose edge is rounded, with (b) a
stress intensity factor derived from the FM realm,
describing a strip under tension, exhibiting lateral trans-
verse periodic collinear cracks. An extensive error anal-
ysis of the formula proposed for the evaluation of the
peak contact pressure is diagrammatically presented.

The article is organized as follows. A literature
review highlights the specific problems encountered in
the design of rectangular elastomeric seals. The peak
contact pressure for a semi-infinite rigid punch with
rounded edges indenting a deformable half plane and a
FM solution expressing the stress singularities at the
tips of transverse cracks in a strip of finite width are
presented in specific sections. A formulation is then
derived that estimates the mean stress encountered in
the FM solution in terms of the strip deformation,
which corresponds to the seal fractional compression;
this compression is the most relevant design parameter
in practical applications. The two solutions are then
asymptotically matched to derive an analytical expres-
sion for the peak contact pressure in terms of the seal
fractional compression that accounts for the seal finite
width and height. Addressing a representative seal geo-
metry extracted from the pertinent bibliography
(Strozzi4), a specific numerical evaluation is presented
of the robustness of the asymptotic matching formula
as the extent of the contact beyond the initial region
becomes finite (as opposed to infinitesimal), a condi-
tion typical of elastomeric seals. Then, an extensive
finite element (FE) campaign is carried out on a family
of rectangular seal cross-sections to quantify the error
of the above design formulae, inside the small deforma-
tion assumptions, and an illustrative comparison with a
case extracted from the literature is included. Finally,
an extension of the FE campaign to the large deforma-
tion realm is presented, and a comparison with a litera-
ture case is included.

Literature review

This bibliographic survey addresses several aspects,
namely, the geometry of the rectangular seal (and its
fractional compression), the shape of the seal contact
pressure profile, the influence on the pressure profile of
the sealed pressure, the effect of large deformations, the
sensitivity of the contact pressure profile to perturba-
tions of Poisson’s ratio, and the relevance of the stress–
strain law adopted.

Figure 1. Shape of the rectangular seal and the definition of
the main symbols adopted.
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The rectangular seal edges may be manufactured as
square (see Ruskell3). In this case, wear produces cham-
fers whose shape and size are indeterminate. The SAEJ
120R2 standards address rectangular section rubber
seal rings for automotive applications, but the main
interest is focused on the groove geometry rather than
on details of the seal cross-section. In Figure 6 of the
recent paper by Nikas et al.,1 dealing with rectangular
seals, the dimensions describing a break edge are pro-
vided for the seal edges at the extremities of the sealing
profile, thus seemingly indicating that, from a technical
viewpoint, rounded or chamfered edges are indiffer-
ently employed.

Indications extracted from the pertinent literature
on the rectangular seal geometries of technical interest
(Figure 1) are as follows. The ratio r/w, where r is the
radius of the seal rounded edge and w is the seal width,
ranges from 0.0125 to 0.265 (see Strozzi,4 Prati and
Strozzi,10 Nikas and colleagues,11–17 and Stupkiewicz
and Marciniszyn18). The ratio w/h, where w is the seal
width and h is the seal height, ranges between 0.8 and
1.13 (see Strozzi,4 Prati and Strozzi,10 and Nikas and
Sayles15). Often the radiused corners are described by a
quarter circle; however, applications are known in
which the seal rounded corners are described by a por-
tion of a quarter of circumference (see Strozzi4 and
Prati and Strozzi10).

Moving to the shape of the seal contact pressure pro-
file, as a result of the presence of rounded seal edges,
the seal contact pressure exhibits two lateral pressure
bumps, whereas the contact pressure remains flattish in
the contact central zone. On the whole, the contact pro-
file is camel-backed (see Strozzi,4 Strozzi et al.,5,7 Prati
and Strozzi,10 Medri and Strozzi,19 Rana et al.,20 and
Stupkiewicz and Marciniszyn18).

Apparently, the presence of lateral pressure bumps
promoted by the rounded edges was first noticed in
Dowson and Swales.21 In Field and Nau,22–24 limited
lateral pressure bumps were found. In Field and Nau,22

it was commented that ‘the reason why the pressure
peaks are absent in the present work is not clear’.

The influence on the pressure profile of the sealed
pressure is examined below. The presence of a sealed
pressure modifies the dry contact pressure distribution
evaluated in its absence. In Lindley,25 the effect of a
pressure difference across an O-ring seal is considered
with particular regard to the possible occurring of
leakage.

Moving to rectangular seals, in Ruskell,3 the dry
contact pressure distribution in the presence of a sealed
pressure is estimated by adding the sealed pressure to
the contact pressure distribution evaluated in the
absence of sealed pressure. The numerical forecasts pre-
sented in Figure 9 of Stupkiewicz and Marciniszyn18

agree with this assumption. However, the experimental
results of Field and Nau22 show that in some cases the
central flat portion of the contact pressure remains
essentially horizontal, whereas in other situations it
perceivably tilts as a result of the combined effect of

the sealed pressure and of the frictional forces (see
Prati and Strozzi10 and Stupnicki26). As an alternative
method to that favoured in Ruskell3 and Prati and
Strozzi,10 it has been proposed to estimate the contact
pressure distribution in the presence of a sealed pres-
sure by adding to the contact pressure, evaluated in the
absence of a sealed pressure, a linear distribution,
whose values at the seal edges are the sealed and the
atmospheric pressure, respectively. Since the main aim
of this article is to evaluate the peak contract pressure,
the two above-described models, that is, the model
ignoring the pressure tilting and the model mimicking a
pressure tilting, concur in favouring the practical rule
of thumb according to which the peak contact pressure
may be estimated as the sum of (a) the lateral pressure
bump computed in the absence of a sealed pressure and
(b) the sealed pressure.

The effect of large deformations is discussed below.
Although the seal compressions may reach values as
high as 20%, in the interest of simplicity, linear elasti-
city is generally employed in the literature, especially in
the analytical studies. Some information on the effect
of large deformations may be extracted from Dragoni
and Strozzi,27 where the mismatch between the solu-
tions in small and large deformations was found to be
of the order of the fractional compression imposed (see
also Strozzi and Unsworth28).

The sensitivity of the stress field to perturbations of
Poisson’s ratio (or, equivalently, of the bulk modulus)
of the elastomeric material is examined in the follow-
ing. For elastomeric materials, Poisson’s ratio, which
quantifies the cubic compressibility of the elastomer, is
very close to the ideal incompressibility value 0.5; this
threshold is often adopted in the mechanical analysis of
elastomeric units (see Lindley29 and Allen et al.30) since
its exact value is difficult to measure (see Strozzi31).

Well-documented cases are available in which the
stress field of the elastomeric unit highly depends on the
cubic compressibility of the material, especially when
the elastomeric component is bonded to a rigid surface
(e.g. Holownia32). Encouragingly, it was numerically
found in Prati and Strozzi,10 that for a rectangular seal
the contact pressure is essentially independent of the
cubic compressibility adopted for the elastomeric mate-
rial, provided that Poisson’s ratio is higher than, say,
0.489. The limited influence of Poisson’s ratio for the
title geometry may be rationalized by observing that the
seal border is not bonded to a rigid counterface (see
also Strozzi and Unsworth28).

The importance of the constitutive relation (i.e. the
stress–strain law) for elastomeric materials is considered
hereinafter. The nonlinear stress–strain response in elas-
tomeric materials subjected to large deformations is
generally expressed by a strain energy function formu-
lated in terms of the three Rivlin strain invariants. The
sensitivity of the seal stress field to the formulation of
the strain energy function has been numerically assessed
in Prati and Strozzi10 and Nikas and Sayles,14,15 for a
rectangular seal by comparing an experimentally
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calibrated expression of the strain energy function (see
Medri and Strozzi33), to a compressible neo-Hookean
law, Young’s modulus for infinitesimal strains being
the same for the two cases. A discrepancy lower than
10% is perceivable in the vicinity of the pressure bumps,
where the deformations are highest (see also Nikas and
Sayles14,15).

Simplifying assumptions

The simplifying assumptions adopted are justified by
the indications retrieved from the literature survey.
Linear elasticity in plane strain is adopted, and a refer-
ence value is attributed to Poisson’s ratio, namely,
n=0.489. The contact between the seal and the coun-
terface is assumed as frictionless. The contact pressure
profile is evaluated in the absence of a sealed pressure.
Only for section ‘Numerical assessment of the error
incurred by large deformations’, large deformations
have been used in conjunction with a neo-Hookean
constitutive law.

Design formula for the contact pressure
peak

In this section, an analytical expression of the peak con-
tact pressure for a rectangular seal with rounded edges,
compressed against a rigid counter plane, is obtained
by combining the analytical solution available for a
rigid rectangular punch with rounded edges and of
semi-infinite width indenting a deformable half plane of
Strozzi et al.,7 Sackfield et al.,8 and Banerjee et al.,9

with a FM solution dealing with the stress singularities
at the tips of transverse cracks in a strip of finite width.
This combination is expected to correct the unrealities
of the above analytical solution and to account for the
finiteness of the indenter dimensions. The above combi-
nation relies on a matching between the two above-
mentioned asymptotic solutions, detailed in the two fol-
lowing sections.

Analytical contact pressure profile for an indenter of
semi-infinite width

The analytical contact pressure p for a plane, friction-
less, rounded, rigid punch of semi-infinite width, com-
pressed against a deformable half plane (see Sackfield
et al.8), is

p jð Þ= E�

2pr
2
ffiffiffiffiffi
jd

p
+ j � dð Þ log

ffiffiffi
d
p
�

ffiffiffi
j
pffiffiffi

d
p

+
ffiffiffi
j
p

 !" #
ð1Þ

in which the j coordinate spans the contact length start-
ing from the contact extremity. In addition, d denotes
the unknown extent of the contact along the radiused
region, r is the radius of the rounded edge, and E* is the
equivalent Young’s modulus. It is recalled that the
above expression relies on the Boussinesq foundation

model, which, holding for an infinite half plane, cannot
account for the effect of the finite punch width and
height.

Expression (1) has been obtained in Sackfield et al.,8

by performing a limit of the solution of Ciavarella
et al.,6 referring to an indenter of finite width. In
Strozzi et al.,7 the same formula has been obtained by
directly referring to an indenter of semi-infinite width.

The maximum contact pressure pmax according to
expression (1) (see Strozzi et al.7 and Sackfield et al.8)
is

pmax

E�
ffi 0:382

d

r
ð2Þ

In addition, for large j values, the contact pressure
(1) asymptotically varies with j as (Sackfield et al.8)

p jð Þ’ 2E�
ffiffiffiffiffi
d3
p

3pr

1ffiffiffi
j
p , j� d, j� a,w, h ð3Þ

where a, w, and h are the characteristic dimensions of
the problem, described in Figure 1.

FM expression derived from existing solutions

It has already been mentioned that following Sackfield
et al.,8 the unrealities of the analytical solution may be
corrected by matching two asymptotic solutions,
namely, (a) the analytical pressure profile valid for a
frictionless, plane, rounded rigid punch of semi-infinite
width indenting a deformable half plane and (b) the
corresponding pressure profile describing a FM equiva-
lent of the problem under scrutiny.

Figure 2(a) illustrates on the left the basic seal cross-
section, rounded along the lower border and whose
upper profile is flat, of height h. It also includes on the
right a variant of doubled height in which the upper
border is equally rounded, which may be reconducted
to the basic geometry.

The FM equivalent should account for three main
aspects of the seal deformation. First, it should consider
the effect of the seal material protruding from the con-
tact region. Second, it should account for two parts of
the rectangular seal border remaining rectilinear under
compression, namely, (a) the flat portion of the sealing
profile and (b) the seal opposite flat side. Third, the FM
problem should account for the interaction between the
two lateral pressure peaks, when the seal flat portion is
limited.

These three properties may be mimicked by a FM
solution dealing with a laterally cracked strip of finite
width and by imposing that the strip exhibits, in addi-
tion to its vertical axis, two transverse symmetry axes;
the first axis passing through two collinear edge cracks
and the second axis being parallel to the previous one
and at a distance equal to the seal height. A suitable
FM model is therefore an infinitely long strip of finite
width under remote tension s, exhibiting an infinite
array of equispaced, transverse, collinear edge cracks
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(see Figure 2(b)) in which the above symmetry axes are
evidenced. It is noted that since in practice the seal is
compressed, while the cracked strip is elongated, the
sign convention for the two nominal stresses is
opposite.

By assuming that the contact extent of the seal
rounded profile is sufficiently small, the crack width, a,
coincides with the width of the rounded portion of the
seal profile. The equivalence between the seal cross-
section and the crack strip also requires that the dis-
tance between two parallel contiguous cracks is equal
to twice the seal height, h, and that w is both the seal
finite width and the strip width (see Figure 2).

A parametric solution to the above FM problem does
not appear to be traceable in the pertinent literature; the
most similar available problems are probably (a) two
collinear transverse edge cracks in a strip of finite width,
for which an interpolating formula is reported in Tada
et al. (p. 46)34; (b) an infinite array of periodic, parallel,
edge cracks in a semi-infinite plane, for which an analy-
tical expression is supplied in Tada et al. (p. 264),34 only
for very large or very small values of the period, whereas
for intermediate values of the period, a graphical repre-
sentation is provided; and (c) an infinite array of trans-
verse, central (as opposed to edge) cracks in a strip of
finite width, for which only a graphical representation is
presented in Tada et al. (p. 285).34

In the following, a formula for the above FM prob-
lem is proposed that is derived by combining the

aforementioned cases (a) and (b). In fact, for the case
(a), the (rearranged) expression of KI is

KI =1:122
f 2a

w

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a

w

q s
ffiffiffiffiffiffi
pa
p

ð4Þ

where the expression of f is

f
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� �
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w
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+0:420
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w
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w
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ð5Þ

and s is the remote (nominal) stress, defined in Tada
et al.34 as the load over the strip total width.

For the above case (b), the expression of KI is

KI =1:122g
a

h

� �
s9

ffiffiffiffiffiffi
pa
p

ð6Þ

where g is a polynomial fitting a curve of Tada et al. (p.
264)34 in the practically relevant range h/a . 1.5 (see
Figures 5–16)

g
a

h

� �
=1:000+0:127

a

h

� �
� 3:190

a

h

� �2
+4:958

a

h

� �3
� 2:503

a

h

� �4 ð7Þ

While the definition of the remote (nominal) stress
s# for the above case (b) is unambiguous for the

Figure 2. Seal geometry (a) in its undeformed (solid line) and compressed (dotted line) configuration, compared with the (b)
proposed FM model, in the undeformed configuration under traction.

308 Journal of Strain Analysis 51(4)

 at Univ Modena E Reggio Emilia on December 1, 2016sdj.sagepub.comDownloaded from 

http://sdj.sagepub.com/


edge-cracked half plane, when the strip is of finite
width, it becomes not obvious whether the remote
stress should be evaluated as the total load divided by
the width of the uncracked portion of the strip, or by
the total width. Such uncertainty is resolved in accor-
dance with equation (4) by adopting a s# value defined
as the geometrical mean of the two nominal stress defi-
nitions, that is

s9=
sffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a

w

q ð8Þ

To derive an expression valid for the geometry of
Figure 2, various combinations of the two above solu-
tions have been attempted; an accurate and manage-
able expression was found to be

KI = 1:122
min f 2a

w

� �
, g a

h

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a

w

q s
ffiffiffiffiffiffi
pa
p

ð9Þ

where the min function has been introduced to account
for the global response being accurately modelled by
the disjoint effect of the single, most dominant term,
rather than by a joint combination of the two functions
f and g.

An error analysis of formula (9) for KI has been car-
ried out within the practically relevant ranges 1.54w/
(2a)4 40, 1.54 h/a4 50, employed in Figures 5–16,
and the maximum error has been found to be within
65% with respect to the FE predictions (see also
Appendix 2).

To compactly express the fraction of equation (9),
the adimensional term s is introduced

s
2a

w
,
a

h

� �
=

min f 2a
w

� �
, g a

h
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ffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a

w

q ð10Þ

It is observed that s approaches unity for small val-
ues of 2a/w and a/h. With the aid of equation (10), the
expression of KI becomes

KI =1:122 s
2a

w
,
a

h

� �
s
ffiffiffiffiffiffi
pa
p

ð11Þ

The lead term of the near tip normal stress profile p̂
for the cracked strip may be expressed as

p̂ jð Þ’ K�ffiffiffi
j
p =

KIffiffiffiffiffiffiffiffi
2pj
p , j� a, h,w ð12Þ

where j is the distance from the apex, and K* is a gen-
eralized stress intensity factor employed in Sackfield
et al.,8 which is proportional to the classical KI para-
meter of the FM field. It is noted that the above FM
expression is independent of Poisson’s ratio, since the
so-called Michell theorem (see Jeffery35) holds, this
geometry being simply connected, and the boundary
conditions being formulated in terms of stress.

Expression of average stress in terms of seal/strip
deformation

As usual, the FM parameter KI is expressed in equation
(11) in terms of the remote tension s; however, in this
application regarding elastomeric seals, a more relevant
parameter than the remote tension is the seal fractional
compression, k. Consequently, a FM expression has
been developed that is based on the fractional compres-
sion imparted to the cracked strip.

By denoting with E* the equivalent elastic modulus
(suitable for describing plane strain conditions), the
relation between the fractional compression, k, and the
remote tension, s, may be expressed as

s = q
2a

w
,
a

h

� �
kE� ð13Þ

where the corrective function q(2a/w, a/h) accounts for
the fact that in the cracked strip, an imposed traction
generates unevenly distributed strains as a result of the
crack shielding effect, which produces stress-relieved
zones in the vicinity of the crack-free sides (see
Figure 3).

To account for the above-discussed uneven strain
distribution, a plane version has been developed of a
classical approach employed in the design of bolted
connections. In this practical approach, a pair of sub-
stitutional deformation cone frusta is employed to eval-
uate the stiffness of the mating members (see the VDI
223036 Standards part I, p. 31). A commonly adopted
value for the cone half-angle is f=30�. Such substitu-
tional volume represents the tensionally active region
of the mating members; its cross-sections are supposed
to behave in uniaxial stress state according to the ele-
mentary theory of a beam subjected to a normal force.

The substitutional double wedge shown in Figure 3
(left) represents the plane counterpart of the above axi-
symmetric cone frusta, from which it inherits the
assumption of uniaxial, uniform stress along its cross-
sections; however, a shortcome of this plane model is
that two possible situations may occur in which the
wedge intersects or otherwise the strip lateral sides.

Figure 3. Substitutional plane wedge on the left, and its
exponential approximation on the right.
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In order to unify the two above possible situations, the
exponential description of the active profile shown in
Figure 3 (right), initially osculating the wedge and
asymptotically approaching the strip sides, has been
endorsed in this article.

The stiffness corrective factor q of formula (13) is
obtained as the ratio between the integral harmonic
average of the cross-section width of the substitutional
profile and the strip width

q
2a

w
,
a

h

� �
=

h

w
Ðh
0

1
w�2ae�xa tan f dx

=
tan f

a
h ln e

tan f

a=h � 2a
w

� �
� ln 1� 2a

w

� �h i
ð14Þ

As expected, q approaches unity for small values of 2a/
w and a/h. An alternative, more elegant approach sug-
gested by an anonymous reviewer is discussed in
Appendix 3.

Asymptotic matching

In this section, an asymptotic matching is carried out
between the solution for a semi-infinite rectangular
rigid punch with rounded edges indenting a deformable
half plane and for the stress intensity factor of a later-
ally cracked strip under tension. In particular, by
asymptotically matching expressions (3) and (12), the
value of d may be formulated as

d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2r2K�2

4E�2
3

r
ð15Þ

By inserting the above value of d into expression (2)
for the maximum contact pressure pmax, one obtains
formula (19) of Sackfield et al.8

pmax ffi 1:07

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K�2E�

r

3

r
ð16Þ

Equivalently, it is possible to formulate pmax as
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,
a
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w
,
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h
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s ð17Þ

where KI has been expressed by combining equations
(11) and (13). In equation (17), pmax has been expressed
in terms of the equivalent Young’s modulus E*=E/
(12 n2), of the ratio a/r, where r is the radius of the
rounded edge and a is the horizontal extent of the pro-
truding material beyond the flat portion of the sealing
profile, of the fractional compression, k, and of the two
adimensional factors q, formula (14), and s, formula
(10), defined as functions of the two geometrical ratios
2a/w and a/h, where w and h are the seal width and
height, respectively.

Numerical assessments

Three numerical assessments on the peak contact pres-
sure error incurred by the proposed formulae, with
respect to the forecasts of particularly accurate FE
models, are presented in dedicated sections: the first
assessment addresses a specific geometry undergoing
an increasing contact extent; the second assessment
considers a variety of geometric proportions and com-
pression levels, where, however, the rounded part is
described by a quarter circle; and the third assessment
removes the above restraint by considering rounded
parts shorter than a quarter circle (see Figure 1).
Details on the FE model implementations are summar-
ized in Appendix 2.

Numerical assessment of the asymptotically matched
formulation when the contact area undergoes a
noticeable progression

Before proceeding to an extensive application of the
above formulation, it was decided to explore its accu-
racy when one of the underlying assumptions is gradu-
ally weakened, that is, the smallness of the contact
width along the rounded portion. In fact in the seal
realm, the contact width progression may become
noticeable with respect to the seal characteristic dimen-
sions. A reference rectangular seal is considered that is
defined by the following normalized geometrical
parameters and elastic constants: w/r=3.78, h/
r=3.33, r/a=2, E ’ 3.52MPa, n=0.489 (see
Strozzi,4 Strozzi et al.,7 and Prati and Strozzi10).

The fractional compression, which is normally a
design parameter, is here treated as a dependent vari-
able; in fact, a semi-inverse approach has been adopted
in the FE forecasts, in order to limit the nonlinearities
to that induced by the progressive nature of the con-
tact. The FE model is shown in the inset of Figure 4,
and it considers the actual problem of an elastic body
whose profile is partially flat and partially circular,
pressed against a rigid flat counter plane (see Figures 1
and 2(a)).

The above case, named (a), differs from the idealized
geometry (b) treated in Sackfield et al.,8 in three dis-
tinct aspects: (1) in (a), the body is of finite dimension,
whereas in (b) it is infinite; (2) in (a), the elastic body is
profiled and the rigid counter plane is flat, whereas in
(b) the elastic body is flat and the rigid counterpart is
profiled; and (3) in (a), a circular profile is adopted,
whereas in (b) a parabolic approximation is used.

The main aim of this section is to evaluate the level
of accuracy that a design formula for the peak pressure
based on equation (16) may reach; consequently, only
the cumulative error induced by the three mentioned
discrepancies is here reported.

In evaluating the peak contact pressure according to
equation (16), the particularly accurate numerical coef-
ficient of 1.07335 has been used within the contest of
the error analysis of Figure 4; in addition, the
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generalized stress intensity factor K* has been evaluated
with a dedicated FE analysis tailored on the above ref-
erence seal geometry and based upon the approach of
Smith and Della-Ventura.37 This dedicated analysis has
been adopted in compiling Figure 4 to avoid the errors
incurred by the employment of a stress intensity factor
based on the s, q estimates (see formula (17)).

Figure 4 illustrates the relative error e

e=
pmax , eq16

pmax ,FE
� 1 ð18Þ

on the peak pressure, incurred by equation (16) with
respect to the FE modelling.

The error curve is plotted versus the ratio between
the contact extent along the rounded region, d, and the
shortest among the elastic substrate characteristic
dimensions, namely, the seal section height, h, the half
width of the flat portion of the sealing profile, (w/2-a),
and the protrusion extent, a; in the reference geometry,
the latter, a, is the most restraining dimension, so that
the above ratio is d/a.

Figure 4 shows that the error remains lower than
1% when the contact extent of the rounded portion is
smaller than about half the protrusion extent, that is,
d/a=1/2. This result gets confidence in the employ-
ment of this approach for applications in the seal realm.
The validity of this result is limited to the contacting
profile here examined; its extension to different profiles
would require further investigations.

Numerical assessment of the analytical expression of
the contact pressure peak for a rounded edge
shaped as a quarter of circumference

As already mentioned, the asymptotically corrected
analytical expression (17) of the peak contact pressure
should account for four dimensional geometrical para-
meters, namely, (a) the extent of the projection of the
lateral parts beyond the flat portion of the sealing pro-
file, a; (b) the seal width, w; (c) the seal height, h; and
(d) the rounding radius, r. Consequently, the normal-
ized parameters describing the seal geometry are three.
In this section, only a rounded edge described by a
quarter of circumference is considered; for this geome-
try, a equals r. Consequently, the normalized geometri-
cal parameters considered in this section are two,
namely, w/(2r) and h/r, to which the value must be
added of the fractional compression, k, imparted to the
seal.

It is too difficult to derive analytically an error esti-
mate of formula (17), detailed information on the pres-
sure peak values for a spectrum of seal geometries being
unavailable. It was therefore decided to carry out an
error analysis on formula (17) with the aid of FE.

In order to focus on the ability of the asymptotically
corrected analytical expression (17) to account for the
three above-normalized parameters in predicting the
contact pressure peaks, it was decided to adopt for the
time being linear elasticity and to postpone the explora-
tion of large deformation effects to a dedicated section.

Figure 4. Comparison between the relative error on the peak contact pressure according to formula (18) incurred by the
analytical approach with respect to the FE forecasts.
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Four error diagrams (Figures 5–8) reporting w/(2r)
along the x-axis, and h/r along the y-axis, have been
compiled; the x variable w/(2r) ranges between 1.5 and
40; the y variable h/r ranges between 1.5 and 50; such
intervals generously encompass practically relevant
geometries of rectangular seals (see section ‘Literature
review’). The four diagrams refer to fractional compres-
sions, k, of 1, 5, 10, and 15%, respectively; the contour
lines define the relative error between the pressure peak
obtained with the asymptotic formula (17) and with
FE, assumed as the reference value; a positive error
means that the asymptotic formula overrates the FE
predictions.

The error generally increases with the fractional
compression, and this trend is imputable to the weaken-
ing of the assumption related to a small contact extent
along the rounded profile, as it emerges from Figure 4.

The most interesting zone of the diagrams is the
upper-right corner since it covers most of the techni-
cally relevant seal shapes. In this zone, the relative error
is lower than the fractional compression imparted.

Formula (17) becomes less accurate in the vicinity of
the lower-left corner of the diagrams, that is, for rela-
tively low values of w/(2r) and h/r, a condition, this, in
which the two lateral pressure peaks may interact. In
this diagram corner, the flat portion of the sealing pro-
file becomes very small, and, therefore, the seal section
approaches a portion of an O-ring described by a circu-
lar segment. In Figure 2 of Ciavarella et al.,6 it is shown
that the analytical pressure profile becomes Hertzian
for low values of the flat portion of the sealing profile.
For such seal geometries, a direct application of the for-
mulae available for O-ring seals (George et al.2) is per-
haps preferable.

As a final remark, the asymptotic expression (19)
derived in Strozzi et al.7 for the peak contact pressure
was found to be independent of the rounding radius,
whereas in Figures 5–8 the rounding radius plays a rele-
vant role, especially when it is relatively large. This
apparent contradiction may be resolved by observing
that formula (19) of Strozzi et al.7 addresses an infi-
nitely wide and high seal, whereas in Figures 5–8 the

Figure 5. Relative error on the peak contact pressure
according to formula (17) with respect to FE forecasts for a
fractional compression k of 1%.

Figure 6. Relative error on the peak contact pressure
according to formula (17) with respect to FE forecasts for a
fractional compression k of 5%.

Figure 7. Relative error on the peak contact pressure
according to formula (17) with respect to FE forecasts for a
fractional compression k of 10%.

Figure 8. Relative error on the peak contact pressure
according to formula (17) with respect to FE forecasts for a
fractional compression k of 15%.
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effect of the seal finite dimensions is accounted for,
albeit approximately. The limited error gradients
observed in the proximity of the upper-right corner of
the diagrams confirm the fact that the influence of the
rounding radius becomes progressively small for large
values of w and h.

As an example of the application of the previous for-
mulae, a rectangular elastomeric seal is considered that
is defined by the following dimensions and elastic con-
stants, extracted from Stupkiewicz and Marciniszyn:18

width w=3.5mm, height h=5.15, edge radius r=0.1,
0.2, and 0.4mm, fractional compression, k=2.91%,
and E ’ 3G=10.98MPa (Poisson’s ratio adopted in
Stupkiewicz and Marciniszyn18 is n=0.496; the rele-
vance of n has been discussed in the literature review).

For the three-edge radii r=0.1, 0.2, and 0.4mm,
the maximum peak contact pressure forecast by for-
mula (17) is 1.262, 1.257, and 1.237, respectively,
whereas its counterpart derived from FE is 1.252,
1.246, and 1.227MPa, respectively; for all three cases,
the relative error is lower than 1%, and it is consistent
with Figures 5 and 6, dealing with fractional compres-
sions of 1% and 5%, respectively, encompassing the
k=2.91 value.

Numerical assessment of the analytical expression of
the contact pressure peak for a rounded border
shorter than a quarter circumference

In this section, seal geometries are addressed in which
the extent of the rounded border is shorter than a quar-
ter circumference (see Figure 1). To limit the number of
independent variables, only geometries described by
r/a=2 (see Strozzi4 and Prati and Strozzi10) are con-
sidered in this study.

Four error diagrams (Figures 9–12) have been
compiled, which are analogous to Figures 5–8; these
diagrams report w/r along the x-axis and 2h/r along the
y-axis for geometries defined by a= r/2; they refer to

fractional compressions, k, of 1%, 5%, 10%, and 15%,
respectively; the contour lines define the relative error
between the pressure peak obtained with the

Figure 9. Relative error on the peak contact pressure
according to formula (17) with respect to FE forecasts for
a = r/2 and for a fractional compression k of 1%.

Figure 10. Relative error on the peak contact pressure
according to formula (17) with respect to FE forecasts for
a = r/2 and for a fractional compression k of 5%.

Figure 11. Relative error on the peak contact pressure
according to formula (17) with respect to FE forecasts for
a = r/2 and for a fractional compression k of 10%.

Figure 12. Relative error on the peak contact pressure
according to formula (17) with respect to FE forecasts for
a = r/2 and for a fractional compression k of 15%.
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asymptotic formula (17), and with FE, the latter being
assumed as reference.

The fractional compressions examined have been
confined to 15% since for moderately higher compres-
sions the contact length may extend to the whole sealing
profile (see Strozzi4); in this case, the contact pressure
no longer vanishes at the contact extremities, and for-
mula (17) becomes inapplicable.

Numerical assessment of the error
incurred by large deformations

In this section, the effect of large deformations is
explored with FE, and the numerical forecasts are com-
pared to a modified version of the design formula (17).
To confine this error analysis to the effect of large
deformations, thus essentially disregarding the influ-
ence of the constitutive relationship, in the FE study of
this section, the compressible neo-Hookean constitutive
relationship has been adopted since it constitutes the

natural extension to large deformations of the Hooke
law employed in small deformations. The material con-
stants of the neo-Hookean constitutive relationship are
derived from Young’s modulus and Poisson’s ratio
used in the small deformation theory.

The analytical formulae have been modified by
adopting a definition of the seal compression ratio k#
suitable for large strains, that is

k9=
kh

h� kh
=

k

1� k
ð19Þ

where kh is the seal height reduction (see Figure 2). It
is noted that in this definition the reference length
(h2 kh) is expressed with regard to the deformed
configuration.

By substituting k with k# in equations (13) and (17),
corrected mean and peak contact pressure values are
obtained. Four error diagrams (Figures 13–16) have
been compiled, which are analogous to Figures 9–12;
these diagram report w/r along the x-axis and 2h/r

Figure 13. Relative error on the peak contact pressure
according to formulae (17) and (19) with respect to large
deformation FE forecasts for a = r/2 and for a fractional
compression k of 1%.

Figure 15. Relative error on the peak contact pressure
according to formulae (17) and (19) with respect to large
deformation FE forecasts for a = r/2 and for a fractional
compression k of 10%.

Figure 14. Relative error on the peak contact pressure
according to formulae (17) and (19) with respect to large
deformation FE forecasts for a = r/2 and for a fractional
compression k of 5%.

Figure 16. Relative error on the peak contact pressure
according to formulae (17) and (19) with respect to large
deformation FE forecasts for a = r/2 and for a fractional
compression k of 15%.
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along the y-axis for geometries defined by a= r/2; for
consistency with Figures 9–12, they refer to the small
strain definition of the fractional compression, k, of
1%, 5%, 10%, and 15%, respectively; the contour lines
define the relative error between the pressure peak
obtained with the corrected asymptotic formula (17), in
which k# is used instead of k, versus FE forecasts; con-
sistent with the large strain assumption, the Cauchy
definition of contact normal stress is now employed in
the FE predictions.

Surprisingly, the errors are similar to their counter-
parts incurred in linear elasticity, whose source has
been discussed in Johnson38. As an example of the
application of the previous formulae, the rectangular
elastomeric seal is considered that has already been
examined in section ‘Numerical assessment of the
asymptotically matched formulation when the contact
area undergoes a noticeable progression’. The seal is
defined by the following normalized geometrical para-
meters and elastic constants: w/r=3.78, h/r=3.33, r/
a=2, E ’ 3.52MPa, and n=0.489, and by a frac-
tional compression k=15% (see Strozzi,4 Strozzi
et al.,7 and Prati and Strozzi10). The maximum peak
contact pressure forecast by the corrected formula (17)
is 1.011MPa. Moving to the FE peak pressure, its
value is 1.031MPa under large strain assumptions, it is
0.941MPa under small strain assumptions, whereas the
finite elasticity value reported in Strozzi4 is 1.05MPa.
This example confirms the practical usefulness of the
proposed methodology.

Conclusion

The contact pressure in an elastomeric rectangular seal
with rounded edges has been considered. An asymptotic
matching has been performed between an available ana-
lytical expression of the contact pressure that neglects
the finiteness of the seal dimensions and a FM solution
describing a periodically, laterally cracked strip of finite
width. This matching has provided a corrected formula
for the peak contact pressure that accounts for the
finiteness of the seal dimensions. An extensive error
analysis of the proposed formula has been performed
with the aid of FE. The analytical expression for the
peak contact pressure has been validated versus numeri-
cal predictions for a large family of seal geometries and,
in particular, for a seal reference shape extracted from
the pertinent literature. Finally, an appraisal of the
finite deformation effect has been carried out numeri-
cally. The error has been found to be technically accep-
table for practically relevant seal geometries.
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Appendix 1

Notation

a extent of the rounded portion of the seal
(or crack extent)

d extent of the contact along the seal
rounded portion

E Young’s modulus
E* equivalent Young’s modulus
f auxiliary function
g auxiliary function
h seal height (or edge crack half-period)
K* generalized stress intensity factor
KI stress intensity factor
p contact pressure
p̂ lead term of the normal stress profile in

the cracked strip
pmax maximum contact pressure
q stiffness corrective function
r seal corner radius
s auxiliary function
w seal width (or strip width)

d function describing the wedge side
k seal fractional compression for small

strains
k# alternative definition of seal fractional

compression for large strains
n Poisson’s ratio
j local coordinate along the contact length
s remote tension
s# alternative definition of remote tension
f substitutional cone half-angle

Appendix 2

Details on the FE modelling are given below. The com-
mercial solver MSC.Marc 2013 has been employed in
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all simulations. Particular attention has been paid to
the discretization of the rounded zone, since, following
Olukoko et al.,39 at least 10 nodes should define the
progressive extent of the contact zone. Three different
kinds of FE models have been used, depending on spe-
cific implementation requirements.

The FE campaign referred to in section ‘FM expres-
sion derived from existing solutions’ aims at evaluating
the stress intensity factor KI for the cracked strip geo-
metry of Figure 2(b) under an imposed elongation. This
FE prediction has been used to assess the accuracy of
formula (9). A family of 155 models spans the domain.
The J-integral approach implemented in the MSC.Marc
solver has been used. The near tip region is modelled
with eight-noded isoparametric elements, whereas the
remaining domain is dynamically meshed with six-
noded isoparametric triangular elements. The ratio
between the element size at the tip and the smallest
characteristic strip dimension is kept lower than 1/30. A
twice finer mesh has been used to assess convergence.

The FE models referred to in section ‘Numerical
assessment of the asymptotically matched formulation
when the contact area undergoes a noticeable progres-
sion’ use a graded mesh consisting of 94,530 eight-
noded isoparametric elements, with 4096 elements
along the rounded portion of the sealing profile, and it
is gradually coarsened when departing from the afore-
mentioned contact region. The progressive contact is
treated according to the semi-inverse approach, which
combines the results of two linear analyses, whose con-
tact extent is imposed and equal. The number of nodes
in contact beyond the flat portion of the sealing profile
grows from 16 to some thousands depending on the
imposed contact extent. The same mesh was used with
appropriate boundary conditions in evaluating the K*

stress singularity factor according to the Smith and
Della-Ventura37 method. The reference mesh is built by
adopting the parabolic geometry of the inset of
Figure 4; in the K* FE evaluation, a flattened variant
of the same mesh has been obtained by morphing.

The FE forecasts used as reference in compiling the
error maps of Figures 5–16 are based on a family of
1261 models, detailed as follows. The mesh locally
describing the rounded portion of the profile has been
kept unvaried, and it consists of about 12,000 (20,000)
four-noded isoparametric elements in the case r=2a

(r= a), with a local element size equal to a/300, which
gradually coarsens departing from the progressive con-
tact region. The remaining elastic domain has been
dynamically meshed according to the specific extents of
the geometry, with a gradual coarsening. The peak con-
tact pressure has been evaluated with not less than 24
contacting nodes along the rounded portion. The non-
linear node to segment contact algorithm of the
MSC.Marc solver has been employed in modelling the
progressive contact; the use of bilinear (as opposed to
biquadratic, see above) elements coupled with the spe-
cific contact routines is recommended in the
MSC.Marc manual.

Appendix 3

An alternative, more elegant approach for defining the
stiffness corrective factor q has been suggested by an
anonymous reviewer that is based on the Betti theorem
and on an estimate of the crack opening displacement
(COD), for example, the classical square root COD
function quoted in Tada et al.,34 in terms of its integral
value.

By adopting the KI of equation (11) to scale such
COD function, the resulting expression for the q func-
tion is

q
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Unfortunately, the assumed COD loses its accuracy
as the distance from the crack tip becomes comparable
to the problem characteristic dimensions, for example,
the crack length a; for example, in the geometry charac-
terized by the ratios w/r=3.78, h/r=3.33, and r/a=2
(see Strozzi4), the error on the integral of the assumed
COD with respect to a dedicated FE analysis is about
7%, which results in a relative error on the average
pressure of about 6.5%, whereas the error of the substi-
tutional wedge approach is 0.9%. An error analysis car-
ried out on the intervals of Figures 5–8 showed that the
two methods produce comparable cumulative errors in
terms of peak pressure; it was decided to present here
only the substitutional wedge approach.
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